### CHAPTER – VI

### IRRIGATION PLANNING AND COMMAND AREA DEVELOPMENT

#### 6.0 General

Ken-Betwa Link Project envisages transfer of surplus water from Ken basin to Betwa basin to provide water to water short areas of upper Betwa basin by substitution, keeping the needs of the in-basin requirements of Ken basin involving both the States of UP and MP in view and ensuring equity, optimization of water use and cost effectiveness.

The Ken–Betwa link project (Phase–II) envisages construction of following five dam/ barrages to provide irrigation facilities in Betwa basin in Madhya Pradesh:

#### Dam

i) Lower Orr dam

#### **Barrages**

- (i) Neemkheda Barrage
- (ii) Barari Barrage
- (iii) Kotha barrage with increased pond level i.e. 396 m
- (iv) Kesari Barrage

Salient details of above structures are furnished in Table - 6.1.

#### **Table – 6.1**

#### Salient details of dam/barrages proposed under Ken – Betwa link project (Phase – II)

| S.<br>No. | Name of the<br>structure | Name<br>of the<br>river | Bed<br>Level<br>(m) | FRL<br>(m) | Submer-<br>gence<br>Area<br>( ha) | Gross<br>Storage<br>Capacity<br>( MCM) | District<br>Benefitted            |
|-----------|--------------------------|-------------------------|---------------------|------------|-----------------------------------|----------------------------------------|-----------------------------------|
| 1         | Lower Orr dam            | Orr                     | 341                 | 380        | 2723                              | 371.802                                | Shivpuri                          |
| 2         | Neemkheda<br>barrage     | Betwa                   | 415                 | 426        | 484                               | 11.06                                  | Raisen                            |
| 3         | Barari barrage           | Betwa                   | 397                 | 407.72     | 597                               | 14.02                                  | Vidisha                           |
| 4         | Kotha barrage            | Betwa                   | 384                 | 396        | 2210                              | 104.60                                 | Vidisha,<br>Sagar &<br>Ashoknagar |
| 5         | Kesari barrage           | Keotan                  | 395                 | 403.9      | 362                               | 10.00                                  | Vidisha                           |

The water availability and hydrological yield for the dam/barrages of Ken-Betwa Link (Phase-II) have been carried out by National Institute of Hydrology (NIH) Roorkee. The water availability computed at various dependability for the project as finalised by NWDA at proposed project sites is given in Table -6.2.

#### **Table –6.2**

| S.  | Name of the | Dependable flows (MCM) |         |         |  |  |
|-----|-------------|------------------------|---------|---------|--|--|
| No. | structure   | 50%                    | 75%     | 90%     |  |  |
| 1   | Neemkheda   | 440.19                 | 328.61  | 257.03  |  |  |
| 2   | Barari      | 1363.52                | 1078.32 | 785.07  |  |  |
| 3   | Kotha       | 2061.06                | 1593.99 | 1184.90 |  |  |
| 4   | Kesari      | 156.16                 | 120.66  | 91.55   |  |  |
| 5   | Lower Orr   | 501.15                 | 362.53  | 263.98  |  |  |

#### Water availability computed by NIH, Roorkee at various dependability

Based on the simulation study, NIH Roorkee proposed some changes in the command area in their study. After consideration of the design features, changes in planning as per the visit of CWC design team and study of NIH, Roorkee, the command area to be served by the proposed dam and barrages is finalized and given in Table-6.3.

S. River Name the Planned **Annual Irrigation** of structure No. CCA (ha) (in ha )3 1 2 4 5 1 Lower Orr Orr river 45047 67570 3066 2 Neemkheda 3066 Betwa river 3 4444 4444 Barari Betwa river 4 Kotha Betwa river 17357 21696 5 Kesari Keotan 1479 2070 river **Total** 71393 98846

Table-6.3

Command area served by the proposed dam and barrages

#### 6.1 Lower Orr dam/reservoir

Lower Orr reservoir has been planned as a multipurpose reservoir with irrigation as a major benefit whereas drinking water supply and flood moderation are other incidental benefits. Planning of the reservoir has been done in such a way that 75% available yield at Lower Orr dam site will be utilized first for in-basin requirement of upper reaches of Lower Orr dam site. Accordingly, CCA of 45047 ha has been identified in Shivpuri district of Madhya Pradesh. The command area map of Lower Orr dam is given in Figure 6.1.

| Location of Dam                       |                                  |
|---------------------------------------|----------------------------------|
| District                              | Ashok Nagar/Shivpuri             |
| River/River Basin                     | Orr/Betwa (Yamuna)               |
| Name of nearest Village               | Didauni                          |
| Latitude                              | 24 <sup>0</sup> 50'50'' N        |
| Longitude                             | 78 <sup>0</sup> 05'55'' E        |
| Topo sheet No.                        | 54 L/1                           |
| Dam                                   |                                  |
| Type of dam                           | Composite (Concrete cum Earthen) |
| Canal System                          |                                  |
| Length of main canal and feeder canal | 91.26 km long main canal         |
|                                       | 6 MCM to the ennrute village     |
| Drinking Water Supply                 | /town                            |

6.1.1 Lower Orr Dam: Salient Features

The FRL, MWL and MDDL of the dam has been proposed as 380.0 m, 380.408 m and 360.50 m respectively with top dam level as 384.0 m. The Gross storage proposed is 371.802 MCM and area under submergence at FRL is 2723.70 ha.

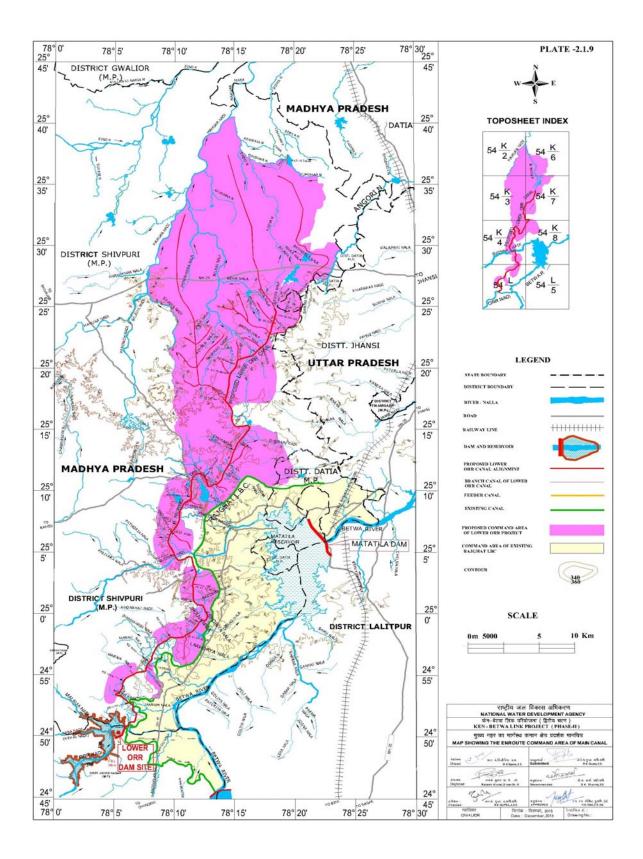



Figure 6.1: COMMAND AREA MAP - LOWER ORR Reservoir

#### 6.1.2 Existing /proposed irrigation facilities

The command area of Lower Orr reservoir has been identified in Shivpuri district of Madhya Pradesh. The existing irrigation facilities in the identified command is mainly through tanks, wells and other sources. The geographical area of Shivpuri district is 1027700 ha out of which 562600 ha area is gross cropped area. An area of 266416 ha is under irrigation from various sources i.e. Canal, Tanks, Wells and Other sources, which is 47.35 % of gross cropped area. Sourcewise irrigation for the year of 2011-12 is furnished at Table 6.4.

Table 6.4 Source wise irrigation of Shivpuri district of Madhya Pradesh for the year 2011-12

| S.  | Source         | Gross area     | Net area       |
|-----|----------------|----------------|----------------|
| No. |                | irrigated (ha) | irrigated (ha) |
| 1.  | Canals         | 51818          | 46469          |
| 2.  | Tanks          | 11411          | 11373          |
| 3.  | Tube Wells     | 67423          | 66066          |
| 4.  | Ordinary Wells | 114949         | 112837         |
| 5.  | Other sources  | 20815          | 19305          |
|     | Total          | 266416         | 256050         |

#### 6.1.3 Land use details of the Shivpuri district

The command area of Lower Orr Project lies in the Shivpuri District of Madhya Pradesh. The Land use deatils of Shivpuri district are furnished in Table 6.5.

Table - 6.5Land use details of the Shivpuri district for the year 2008-09(maximum of five years from 2007-08 to 2011-12)

| S.<br>No. | Details                         | Area in<br>'ha' | % of Geogra-<br>phical area |
|-----------|---------------------------------|-----------------|-----------------------------|
| 1         | Forest                          | 362406          | 35.26                       |
| 2         | Area under non-agricultural use | 60595           | 5.90                        |
| 3         | Barren and unculturable land    | 38097           | 3.71                        |

| S.<br>No. | Details                                      | Area in<br>'ha' | % of<br>Geogra-<br>phical area |
|-----------|----------------------------------------------|-----------------|--------------------------------|
| 4         | Permanent pastures and other grazing land    | 26229           | 2.55                           |
| 5         | Land under miscellaneous crop trees & groves | 3899            | 0.38                           |
| 6         | Culturable waste land                        | 72810           | 7.08                           |
| 7         | Other fallows                                | 30212           | 2.94                           |
| 8         | Current fallows                              | 20359           | 1.98                           |
| 9         | Net area sown                                | 413093          | 40.20                          |
| 10        | Area sown more than once                     | 131911          | 12.84                          |
| 11        | Total cropped area                           | 545004          | 53.03                          |
| 12        | Culturable area                              | 540373          | 52.58                          |
| 13        | Total Geographical area                      | 1027700         | 100.00                         |

#### 6.1.4 Lower Orr Command

#### 6.1.4.1 Location and classification of land in the command area

The command area of Lower Orr canal is spread in Shivpuri district of MP. The geographical area of Shivpuri district is 1027700 ha, as per land use statistics of the year 2008-09 (maximum of five years from 2007-08 to 2011-12), culturable area in the district is 540373 ha which is 52.58% of geographical area of the district. The details of the command area are furnished in Table-6.6. Command area map is appended as Plate 2.1.9 in Volume-V (Part - 1).

Table - 6.6Details of GCA, CCA of Lower Orr Project

| S.<br>No. | Types of irrigation                                                | Gross Command<br>area (ha) | Culturable<br>Command area<br>(ha) |
|-----------|--------------------------------------------------------------------|----------------------------|------------------------------------|
| A         | Irrigation by traditional method<br>through Lower Orr canal system | 64050                      | 33678                              |
| В         | Enroute lifting of water by local people in Shivpuri district      | 4488                       | 2360                               |
| С         | Pressurized irrigation                                             | 17134                      | 9009                               |
|           |                                                                    | 85672                      | 45047                              |

#### 6.1.4.2 Existing cropping pattern

Details of cropping pattern generally adopted in Shivpuri district are given in Table-6.7. The important crops grown in the command area of proposed Lower Orr project are Wheat, Soyabeen, Maize, Gram, Groundnut and Pulses, etc.

| S. No. | Name of crops | Percentage |
|--------|---------------|------------|
| Α      | Kharif        |            |
| 1      | Paddy         | 1.4        |
| 2      | Jowar         | 0.2        |
| 3      | Maize         | 3.5        |
| 4      | Bajra         | 1.5        |
| 5      | Other pulses  | 3.2        |
| 6      | Soyabean      | 24.6       |
| 7      | Ground nut    | 15.3       |
| 8      | Vegetable     | 0.9        |
| 9      | Til (Sesamum) | 2.0        |
|        | Total         | 52.5       |
| В      | Rabi          |            |
| 1      | Wheat         | 28.8       |
| 2      | Barley        | 0.2        |
| 3      | Gram          | 7.7        |
| 4      | Mustard       | 5.9        |
| 5      | Other pulses  | 1.0        |
| 6      | Tur           | 0.2        |
| 7      | Fodder crops  | 3.4        |
| 8      | Vegetable     | 0.1        |
|        | Total         | 47.3       |
| С      | Perennial     |            |
| 1      | Sugarcane     | 0.2        |
|        | Total         | 100.0      |

## Table - 6.7Existing Cropping pattern of Shivpuri district for year 2011-12

#### 6.1.5 Soil surveys

#### 6.1.5.1 Soil capability classification

The land capability classification of Lower Orr Command in Shivpuri district is furnished in Annexure: 6.1.1 of Volume – II.

#### 6.1.5.2 Land irrigability classification

The land irrigability classification of Lower Orr Command in Shivpuri district furnished in Annexure: 6.1.2 of Volume – II.

#### 6.1.6 Proposed cropping pattern in the command of reservoir

The proposed cropping pattern in the command of project has been approved for Shivpuri District by Agriculture department of Madhya Pradesh and considered in the study. Proposed cropping pattern for traditional irrigation and pressurized irrigation are given at Annexure 6.1.3 and 6.1.4 of Volume – II respectively and given in Table-6.8 below:

| S.  | Сгор                  |       | ditional<br>ation | For pressurized<br>irrigation |                   |  |
|-----|-----------------------|-------|-------------------|-------------------------------|-------------------|--|
| No. | Crop                  | %Area | Area<br>( in ha ) | %Area                         | Area<br>( in Ha ) |  |
|     | Kharif                |       |                   |                               |                   |  |
| 1   | Paddy                 | 1     | 360               |                               | 0                 |  |
| 2   | Jowar/Bajara          | 5     | 1802              |                               | 0                 |  |
| 3   | Fodder                | 5     | 1802              | 6                             | 541               |  |
| 4   | Maize                 | 5     | 1802              |                               | 0                 |  |
| 5   | Pulses                | 20    | 7207              | 25                            | 2252              |  |
| 6   | Oilseed               | 10    | 3604              | 13                            | 1171              |  |
| 7   | Soyabeen              | 19    | 6847              | 7                             | 631               |  |
| 8   | Vegetable             | 4     | 1441              | 5                             | 450               |  |
| 9   | Other<br>crops/spices | 1     | 360               | 2                             | 180               |  |
|     | Sub-Total             | 70    | 25226             | 58                            | 5225              |  |

Table - 6.8Proposed cropping pattern in the command of Lower Orr reservoir

| S.  | Crop             | For trac<br>irrig |                   | For pressurized<br>irrigation |                   |  |
|-----|------------------|-------------------|-------------------|-------------------------------|-------------------|--|
| No. | Сгор             | %Area             | Area<br>( in ha ) | %Area<br>75<br>15             | Area<br>( in Ha ) |  |
|     | Rabi             |                   |                   |                               | 0                 |  |
| 10  | Wheat            | 60                | 21622             | 75                            | 6757              |  |
| 11  | Gram             | 15                | 5406              | 15                            | 1351              |  |
| 12  | Other /vegetable | 2                 | 721               | 2                             | 180               |  |
|     | Sub-Total        | 77                | 27748             | 92                            | 8288              |  |
|     | Perennial        |                   |                   |                               | 0                 |  |
| 13  | Sugarcane        | 3                 | 1081              |                               | 0                 |  |
|     | Total            | 150               | 54055             | 150                           | 13513             |  |
|     | Grand Total      |                   | 67568 ha sa       | ay 67570 ha                   |                   |  |

### 6.1.6.1 Cropping pattern & Crop calendar proposed for the Lower Orr reservoir.

Cropping pattern & Crop calendar proposed for the Lower Orr reservoir is furnished in Table-6.9.

Table - 6.9Cropping pattern & crop calendar proposed for the Lower Orr reservoir

|        | Gross Command Area = 67570<br>Culturable Command Area= 45047 |               |                                |                                  |      |                       |                      |                |
|--------|--------------------------------------------------------------|---------------|--------------------------------|----------------------------------|------|-----------------------|----------------------|----------------|
|        | S                                                            | Name of the   | Anr                            | ge of<br>nual<br>ation<br>Press- | Area | Period                |                      | Dura-          |
|        | S.<br>No.                                                    | crop          | -<br>tional<br>irriga<br>-tion | urised<br>Irriga<br>-tion        | (ha) |                       |                      | tion<br>(days) |
|        | 1                                                            | Paddy         | 1                              |                                  | 360  | 10 <sup>th</sup> June | 10 <sup>th</sup> Oct | 123            |
| ų      | 2                                                            | Jowar         | 5                              |                                  | 1802 | 1 <sup>st</sup> June  | 30 <sup>th</sup> Sep | 122            |
| Kharif | 3                                                            | Maize         | 5                              |                                  | 1802 | 1 <sup>st</sup> June  | 30 <sup>th</sup> Sep | 122            |
| Xhi    | 4                                                            | Other pulses  | 20                             | 25                               | 9460 | 16 <sup>th</sup> June | 10 <sup>th</sup> Oct | 117            |
|        | 5                                                            | Soyabean      | 19                             | 7                                | 7478 | 1st June              | 15 <sup>th</sup> Oct | 137            |
|        | 6                                                            | Other oilseed | 10                             | 13                               | 4775 | 1 <sup>st</sup> June  | 15 <sup>th</sup> Oct | 137            |

|      | 7 | Vegetable          | 4   | 5   | 1892  | 1 <sup>st</sup> June | 15 <sup>th</sup> Oct | 137 |
|------|---|--------------------|-----|-----|-------|----------------------|----------------------|-----|
|      | 8 | Other crops/       | 1   | 2   | 540   | -                    | -                    | -   |
|      |   | Spices             |     |     |       |                      |                      |     |
|      | 9 | Other kharif       | 5   | 6   | 2342  | 1 <sup>st</sup> June | 30 <sup>th</sup> Sep |     |
|      |   | (Fodder)           |     |     |       |                      |                      |     |
|      |   | Total              |     |     | 30451 |                      |                      |     |
|      | 1 | Wheat              | 60  | 75  | 28380 | 1 <sup>st</sup> Nov  | 31 <sup>st</sup>     | 151 |
|      |   |                    |     |     |       |                      | Mar                  |     |
| Rabi | 2 | Gram               | 15  | 15  | 6757  | 1 <sup>st</sup> Nov  | 15 <sup>th</sup>     | 135 |
| R    |   |                    |     |     |       |                      | Mar                  |     |
|      | 3 | Vegetable          | 2   | 2   | 901   | 1 <sup>st</sup> Oct  | 31 <sup>st</sup> Jan | 130 |
|      |   | Total              | 77  | 92  | 36038 |                      |                      |     |
|      | С | Perennial          |     |     |       |                      |                      |     |
|      | 1 | Sugarcane          | 3   | 0   | 1081  | 16 <sup>th</sup> Mar | 31 <sup>st</sup> Jan | 322 |
|      |   | <b>Grand Total</b> | 150 | 150 | 67570 |                      |                      |     |

#### 6.1.7 Crop water requirement

The crop water requirements for the Lower Orr command (CCA 45047 ha) has been computed by Modified Penman Method as per the methodology given in the Technical Series-II, a publication of the erstwhile Ministry of Irrigation. The irrigation demand for Lower Orr command works out as 329.812 MCM.

#### 6.1.7.1 Reference Potential Evapo-transpiration (ETo)

A copy of the Scientific Report No. 136 (February 1971) has been obtained from IMD regarding Potential Evapo-transpiration over India. The Reference Evapo-transpiration (ETo) values in mm for Jhansi IMD station of Uttar Pradesh as given in Table-6.10 have been considered in the crop water requirement computation:

Table-6.10Evapo-transpiration (ETo) values in mm for Jhansi IMD station

|        | _    |      |       |       | _     | _     |       |       |     | -     |      |      |       |
|--------|------|------|-------|-------|-------|-------|-------|-------|-----|-------|------|------|-------|
| Month  | Jan  | Feb  | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep | Oct   | Nov  | Dec  | Total |
| ETo in | 63.5 | 84.9 | 138.3 | 172.3 | 215.1 | 201.1 | 136.5 | 116.3 | 127 | 122.8 | 79.1 | 58.6 | 1516  |
| mm     | 05.5 | 04.7 | 150.5 | 172.5 | 213.1 | 201.1 | 150.5 | 110.5 | 127 | 122.0 | 17.1 | 50.0 | 1510  |

#### 6.1.7.2 Crop Coefficients

Crop coefficients for various crops have been considered as per table 27 of Technical Series-II, a publication of erstwhile Ministry of Irrigation.

#### 6.1.7.3 **Pre-sowing & Transplantation Water Demands**

Pre-sowing water demands for various crops has been considered as 65 mm. The transplantation water demands for crop of paddy have been considered as 150 mm.

#### 6.1.7.4 Effective Rainfall

Annual rainfall in the command area is 895.5 mm. The effective rainfall component in the crop water requirement has been computed as per the Table 10 of Technical Series-II, a publication of erstwhile Ministry of Irrigation.

| Month               | Jan  | Feb | Ma  | Apr | May | Jun  |
|---------------------|------|-----|-----|-----|-----|------|
| Average<br>Rainfall | 16.4 | 8.5 | 4.5 | 3.1 | 9.2 | 85.4 |

| Month               | Jul | Aug   | Sep | Oct  | Nov | Dec | Total |
|---------------------|-----|-------|-----|------|-----|-----|-------|
| Average<br>Rainfall | 301 | 292.5 | 162 | 28.3 | 8.5 | 6.1 | 925.5 |

#### 6.1.7.5 Irrigation Efficiency

The water application efficiency has been considered as 65% for normal ID crops and 85% for crop of paddy. For crop under microirrigation system, the field application efficiency has been considered as 85%. Conveyance efficiency has been considered as 75% for proposed lined canal system in the project.

#### 6.1.7.6 Irrigation Demand for Lower Orr command

Crop water requirement computations for crops has been done as per modified penman method and details are given in Annexure 6.1.5 of Volume – II. Monthwise irrigation water demand as computed by Irrigation Management Organisation, CWC for Lower Orr command are given in Table-6.11.

|       |          |             |                    | Unit MCM   |
|-------|----------|-------------|--------------------|------------|
| Month | Drinking | Irrigation  | Irrigation         | Total      |
|       | Water    | Demand (for | <b>Demand</b> (for | irrigation |
|       | Demand   | traditional | pressurize         | demand     |
|       |          | irrigation) | irrigation)        |            |
| Jun   | 0.5      | 31.78       | 5.18               | 36.97      |
| Jul   | 0.5      | 10.36       | 1.56               | 11.91      |
| Aug   | 0.5      | 11.27       | 1.71               | 12.98      |
| Sep   | 0.5      | 29.66       | 3.84               | 33.50      |
| Oct   | 0.5      | 30.97       | 2.03               | 33.01      |
| Nov   | 0.5      | 26.24       | 9.74               | 35.98      |
| Dec   | 0.5      | 24.09       | 4.85               | 28.94      |
| Jan   | 0.5      | 30.92       | 6.72               | 37.63      |
| Feb   | 0.5      | 37.90       | 9.73               | 47.62      |
| Mar   | 0.5      | 20.24       | 6.56               | 26.80      |
| Apr   | 0.5      | 2.70        | 0.00               | 2.70       |
| May   | 0.5      | 19.90       | 1.73               | 21.63      |
| Total | 6.00     | 276.03      | 53.64              | 329.67     |

Table-6.11 Monthwise irrigation water demand for Lower Orr command

#### 6.1.8 Environmental flow at Lower Orr dam

For the proposed Lower Orr dam under Ken-Betwa Link project (Phase-II) in the Lower Betwa basin, the environmental flows have been computed from the estimated monthly flow pattern in the project subbasin. For the monsoon months from June to October, 75% dependable flows have been computed on monthly basis and 20% of the 75% dependable flows in each monsoon month have been reserved for environmental and ecological purposes. However, for the non-monsoon months, average monthly flows have been worked out and 15% of the average monthly flows in different non-monsoon months have been reserved for environmental and ecological purposes. About 44.898 MCM of water is assessed for environmental and ecological purposes. Month wise environmental flow demand at Lower Orr is given in Table-6.12.

| Month | <b>Environmental Flow</b> |
|-------|---------------------------|
|       | (MCM)                     |
| Jun   | 0.449                     |
| Jul   | 0.635                     |
| Aug   | 0.260                     |
| Sep   | 0.026                     |
| Oct   | 0.001                     |
| Nov   | 0.000                     |
| Dec   | 6.422                     |
| Jan   | 24.180                    |
| Feb   | 9.633                     |
| Mar   | 1.157                     |
| Apr   | 1.179                     |
| May   | 0.956                     |
| Total | 44.898                    |

Table-6.12Monthwise environmental flow demand at Lower Orr Dam

#### 6.1.9 Simulation study of Lower Orr command

The Lower Orr project has FRL of 380 m and MDDL has been kept as 360.50 m. While carrying out the simulation study by Irrigation Planning (South), Directorate of CWC, Irrigation demand of 329.67 MCM, domestic water supply demand of 6 MCM and environmental flow requirements of 44.898 MCM have been considered. The monthly evaporation estimates of Guna meteorological station have been used.

The net yield series for Lower Orr Dam site have been developed by NIH, Roorkee from Year 1901-02 to 2008-09. For assessing the success of the project in meeting the projected water demands, the working tables for period of 50 years are considered sufficient. Working tables for Lower Orr dam have been prepared for 55 years (1954-55 to 2008-09) and the success rate of the project in meeting the irrigation demands is 75%. The results of simulations / working tables are tabulated in Table-6.13.

| S.<br>No.         Y=r         Inflow<br>Met         Demand<br>Met         S'<br>Met         Demand<br>Met         S'<br>Met         Evaporation<br>Sills           1         1954         -         1955         486.979         329.673         S         6.000         S         34.584         47.297           3         1956         -         1957         633.044         329.673         S         6.000         S         37.489         229.406           4         1957         -         1958         887.992         329.673         S         6.000         S         37.584         192.916           1         1950         -         1950         622.107         329.673         S         6.000         S         36.356         30.545           8         1961         -         1960         440.665         329.673         S         6.000         S         36.356         30.545           8         1961         -         1962         548.538         329.673         S         6.000         S         31.212         0.000           11         1964         -         1967         361.424         329.673         S         6.000         S         36.228         31.951                                                                              |    |      |    |      |         |            |    |          |     |             |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|----|------|---------|------------|----|----------|-----|-------------|---------|
| No.         Image         F         Met         F                                                                                                                                       | a  |      | 7  |      |         | Irrigation | S/ | Drinking | c m | <b>.</b>    | a       |
| 11954-1955486.979329.673S6.00S34.58447.29721955-1956661.213329.673S6.00S37.489229.40631956-1957633.044329.673S6.00S38.358223.39441957-1958387.992329.673S6.00S37.822165.19161959-1960724.233329.673S6.00S37.582165.19171960-1961440.665329.673S6.00S33.515499.11291962-1963548.338329.673S6.00S35.6191174.414101963-1964524.86329.673S6.00S35.238319.503111964-1965745.95329.673S6.00S35.238319.503121965-1966263.981164.354F6.00S31.2120.000131966-1967361.424329.673S6.00S36.037278.952151968-1969582.947329.673S6.00S35.23837.904141967-1968739.536329.673S6.00S35.848132.935161969-1970950.79832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | Y    | ea | r    | inflow  |            | F  |          | S/F | Evaporation | Spills  |
| 2         1955         -         1956         661.213         329.673         S         6.00         S         37.489         229.406           3         1956         -         1957         633.044         329.673         S         6.00         S         38.358         223.394           4         1957         -         1958         38.7992         329.673         S         6.00         S         37.522         165.191           6         1959         -         1960         724.233         329.673         S         6.00         S         37.522         165.191           7         1960         -         1961         440.665         329.673         S         6.00         S         36.515         499.112           9         1962         -         1963         548.538         329.673         S         6.00         S         36.611         112.837           11         1964         -         1965         745.95         329.673         S         6.00         S         35.238         319.503           12         1965         -         1966         6263.981         164.354         F         6.00         S         36.374 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>~</th> <th></th> <th>~</th> <th></th> <th></th> |    |      |    |      |         |            | ~  |          | ~   |             |         |
| 3         1956         -         1957         633.044         329.673         S         6.00         S         38.358         223.394           4         1957         -         1958         387.992         329.673         S         6.00         S         35.059         2.963           5         1958         -         1959         622.107         329.673         S         6.00         S         37.822         165.191           6         1950         -         1960         724.233         329.673         S         6.00         S         36.356         30.545           8         1961         -         1962         953.522         329.673         S         6.00         S         36.919         174.414           10         1963         -         1964         524.86         329.673         S         6.00         S         36.228         319.503           11         1964         -         1965         745.95         329.673         S         6.00         S         36.228         319.503           12         1965         -         1966         263.981         164.354         F         6.00         S         36.044                                                                                                                     |    |      | -  |      |         |            |    |          |     |             |         |
| 4         1957         -         1958         387.992         329.673         S         6.00         S         35.059         2.963           5         1958         -         1959         622.107         329.673         S         6.00         S         37.842         165.191           6         1959         -         1960         724.233         329.673         S         6.00         S         37.842         319.240           7         1960         -         1961         440.665         329.673         S         6.00         S         38.515         499.112           9         1962         -         1963         548.538         329.673         S         6.00         S         36.219         174.414           10         1965         -         1964         524.86         329.673         S         6.00         S         35.601         112.837           11         1964         -         1965         745.95         329.673         S         6.00         S         35.238         37.904           14         1967         -         1968         739.536         329.673         S         6.00         S         36.084                                                                                                                     |    |      | -  |      |         |            |    |          |     |             |         |
| 5         1958         -         1959         622.107         329.673         S         6.00         S         37.822         165.191           6         1959         -         1960         724.233         329.673         S         6.00         S         37.584         319.240           7         1960         -         1961         440.665         329.673         S         6.00         S         36.356         30.545           8         1961         -         1962         953.522         329.673         S         6.00         S         36.3561         112.837           11         1964         -         1965         745.95         329.673         S         6.00         S         312.12         0.000           13         1966         -         1967         361.424         329.673         S         6.00         S         312.12         0.000           13         1966         -         1967         361.424         329.673         S         6.00         S         36.037         278.952           15         1968         -         1969         582.947         329.673         S         6.00         S         36.037                                                                                                                    |    |      | -  |      |         |            |    |          |     |             |         |
| 6         1959         -         1960         724.233         329.673         S         6.00         S         37.584         319.240           7         1960         -         1961         440.665         329.673         S         6.00         S         36.356         30.545           8         1961         -         1962         953.522         329.673         S         6.00         S         36.919         174.414           10         1963         -         1964         524.86         329.673         S         6.00         S         35.601         112.837           11         1964         -         1965         745.95         329.673         S         6.00         S         31.212         0.000           13         1966         -         1967         361.424         329.673         S         6.00         S         36.037         278.952           15         1968         -         1969         582.947         329.673         S         6.00         S         36.084         195.206           16         1969         -         1970         950.798         329.673         S         6.00         S         36.051                                                                                                                   |    |      | -  |      |         |            |    |          |     |             |         |
| 7         1960         -         1961         440.665         329.673         S         6.00         S         36.356         30.545           8         1961         -         1962         953.522         329.673         S         6.00         S         38.515         499.112           9         1962         -         1963         548.538         329.673         S         6.00         S         36.919         174.414           10         1963         -         1964         524.86         329.673         S         6.00         S         35.621         112.837           11         1964         -         1965         745.95         329.673         S         6.00         S         36.228         319.503           12         1965         -         1969         582.947         329.673         S         6.00         S         35.037         278.952           15         1968         -         1970         950.798         329.673         S         6.00         S         36.037         278.952           15         1968         -         1970         950.798         329.673         S         6.00         S         36.51 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>   |    |      | -  |      |         |            |    |          |     |             |         |
| 8         1961         -         1962         953.522         329.673         S         6.00         S         38.515         499.112           9         1962         -         1963         548.538         329.673         S         6.00         S         36.919         174.414           10         1963         -         1964         524.86         329.673         S         6.00         S         35.601         112.837           11         1964         -         1965         745.95         329.673         S         6.00         S         36.228         319.503           12         1965         -         1967         361.424         329.673         S         6.00         S         36.037         278.952           15         1968         -         1970         950.798         329.673         S         6.00         S         36.031         129.436           16         1969         -         1971         542.149         329.673         S         6.00         S         36.051         146.446           1917         -         1972         835.568         329.673         S         6.00         S         36.051         146                                                                                                              |    | 1959 | -  | 1960 |         | 329.673    | S  | 6.00     |     | 37.584      |         |
| 9         1962         -         1963         548.538         329.673         S         6.00         S         36.919         174.414           10         1963         -         1964         524.86         329.673         S         6.00         S         35.601         112.837           11         1964         -         1965         745.95         329.673         S         6.00         S         36.228         319.503           12         1965         -         1966         263.981         164.354         F         6.00         S         35.238         37.904           14         1967         -         1968         739.536         329.673         S         6.00         S         36.037         278.952           15         1968         -         1970         950.798         329.673         S         6.00         S         36.084         195.206           16         1969         -         1971         542.149         329.673         S         6.00         S         36.051         146.446           1917         -         1972         835.568         329.673         S         6.00         S         36.051         146                                                                                                              | 7  | 1960 | -  | 1961 | 440.665 | 329.673    | S  | 6.00     | S   | 36.356      | 30.545  |
| 10         1963         -         1964         524.86         329.673         S         6.00         S         35.601         112.837           11         1964         -         1965         745.95         329.673         S         6.00         S         36.228         319.503           12         1965         -         1966         263.981         164.354         F         6.00         S         31.212         0.000           13         1966         -         1967         361.424         329.673         S         6.00         S         36.037         278.952           15         1968         -         1969         582.947         329.673         S         6.00         S         36.037         278.952           15         1968         -         1970         950.798         329.673         S         6.00         S         36.051         146.446           1971         -         1971         542.149         329.673         S         6.00         S         36.051         146.446           20         1973         -         1971         542.149         329.673         S         6.00         S         36.051         146                                                                                                              | 8  | 1961 | I  | 1962 | 953.522 | 329.673    | S  | 6.00     | S   | 38.515      | 499.112 |
| 11         1964         -         1965         745.95         329.673         S         6.00         S         36.228         319.503           12         1965         -         1966         263.981         164.354         F         6.00         S         31.212         0.000           13         1966         -         1967         361.424         329.673         S         6.00         S         35.238         37.904           14         1967         -         1968         739.536         329.673         S         6.00         S         36.037         278.952           15         1968         -         1970         950.798         329.673         S         6.00         S         36.084         195.206           16         1969         -         1971         542.149         329.673         S         6.00         S         38.008         393.363           19         1972         -         1973         530.965         329.673         S         6.00         S         36.051         146.464           20         1973         -         1974         763.613         329.673         S         6.00         S         36.051<                                                                                                              | 9  | 1962 | -  | 1963 | 548.538 | 329.673    | S  | 6.00     | S   | 36.919      | 174.414 |
| 12         1965         1966         263.981         164.354         F         6.00         S         31.212         0.000           13         1966         1967         361.424         329.673         S         6.00         S         35.238         37.904           14         1967         1968         739.536         329.673         S         6.00         S         36.037         278.952           15         1968         1969         582.947         329.673         S         6.00         S         36.084         195.206           16         1969         1970         950.798         329.673         S         6.00         S         35.848         132.935           18         1971         1972         835.568         329.673         S         6.00         S         36.051         146.446           20         1973         1974         763.613         329.673         S         6.00         S         36.051         146.446           20         1973         1974         763.613         329.673         S         6.00         S         38.62         303.501           21         1974         1975         547.365         32                                                                                                             | 10 | 1963 | -  | 1964 | 524.86  | 329.673    | S  | 6.00     | S   | 35.601      | 112.837 |
| 13         1966         -         1967         361.424         329.673         S         6.00         S         35.238         37.904           14         1967         -         1968         739.536         329.673         S         6.00         S         36.037         278.952           15         1968         -         1969         582.947         329.673         S         6.00         S         36.084         195.206           16         1969         -         1970         950.798         329.673         S         6.00         S         37.175         512.011           17         1970         -         1971         542.149         329.673         S         6.00         S         38.908         393.363           19         1972         -         1973         530.965         329.673         S         6.00         S         36.051         146.464           20         1973         -         1974         763.613         329.673         S         6.00         S         36.599         340.659           21         1974         -         1975         547.365         329.673         S         6.00         S         38.6                                                                                                              | 11 | 1964 | -  | 1965 | 745.95  | 329.673    | S  | 6.00     | S   | 36.228      | 319.503 |
| 14         1967         -         1968         739.536         329.673         S         6.00         S         36.037         278.952           15         1968         -         1969         582.947         329.673         S         6.00         S         36.084         195.206           16         1969         -         1970         950.798         329.673         S         6.00         S         37.175         512.011           17         1970         -         1971         542.149         329.673         S         6.00         S         35.848         132.935           18         1971         -         1972         835.568         329.673         S         6.00         S         38.908         393.363           19         1972         -         1973         530.965         329.673         S         6.00         S         36.599         340.659           21         1974         -         1975         547.365         329.673         S         6.00         S         36.599         340.659           21         1974         -         1975         547.365         329.673         S         6.00         S         31.                                                                                                              | 12 | 1965 | -  | 1966 | 263.981 | 164.354    | F  | 6.00     | S   | 31.212      | 0.000   |
| 151968-1969 $582.947$ $329.673$ S $6.00$ S $36.084$ $195.206$ 161969-1970950.798 $329.673$ S $6.00$ S $37.175$ $512.011$ 171970-1971 $542.149$ $329.673$ S $6.00$ S $35.848$ $132.935$ 181971-1972 $835.568$ $329.673$ S $6.00$ S $38.908$ $393.363$ 191972-1973 $530.965$ $329.673$ S $6.00$ S $36.051$ $146.446$ 201973-1974 $763.613$ $329.673$ S $6.00$ S $36.599$ $340.659$ 211974-1975 $547.365$ $329.673$ S $6.00$ S $37.093$ $115.418$ 221975-1976 $737.559$ $329.673$ S $6.00$ S $38.62$ $303.501$ 231976-1977185.637 $164.354$ F $6.00$ S $31.218$ $0.000$ 241977-1978 $349.363$ $329.673$ S $6.00$ S $34.118$ $52.351$ 261979-1978 $349.363$ $329.673$ S $6.00$ S $34.118$ $52.351$ 261979-1978 $349.363$ $329.673$ S $6.00$ S $34.118$ $52.351$ 261979-1980 $29.261$ $74.797$ F $2.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13 | 1966 | -  | 1967 | 361.424 | 329.673    | S  | 6.00     | S   | 35.238      | 37.904  |
| 16 $1969$ $ 1970$ $950.798$ $329.673$ $S$ $6.00$ $S$ $37.175$ $512.011$ $17$ $1970$ $ 1971$ $542.149$ $329.673$ $S$ $6.00$ $S$ $35.848$ $132.935$ $18$ $1971$ $ 1972$ $835.568$ $329.673$ $S$ $6.00$ $S$ $38.908$ $393.363$ $19$ $1972$ $ 1973$ $530.965$ $329.673$ $S$ $6.00$ $S$ $36.51$ $146.446$ $20$ $1973$ $ 1974$ $763.613$ $329.673$ $S$ $6.00$ $S$ $36.599$ $340.659$ $21$ $1974$ $ 1975$ $547.365$ $329.673$ $S$ $6.00$ $S$ $37.093$ $115.418$ $22$ $1975$ $ 1976$ $737.559$ $329.673$ $S$ $6.00$ $S$ $38.62$ $303.501$ $23$ $1976$ $ 1977$ $185.637$ $164.354$ $F$ $6.00$ $S$ $31.218$ $0.000$ $24$ $1977$ $ 1978$ $349.363$ $329.673$ $S$ $6.00$ $S$ $34.118$ $52.351$ $26$ $1979$ $ 1978$ $349.363$ $329.673$ $S$ $6.00$ $S$ $34.118$ $52.351$ $26$ $1979$ $ 1978$ $349.363$ $329.673$ $S$ $6.00$ $S$ $34.118$ $52.351$ $26$ $1979$ $ 1980$ $29.261$ $74.797$ $F$ $2.00$ $F$ <td>14</td> <td>1967</td> <td>-</td> <td>1968</td> <td>739.536</td> <td>329.673</td> <td>S</td> <td>6.00</td> <td>S</td> <td>36.037</td> <td>278.952</td>                                                                                                                                                                                                                                     | 14 | 1967 | -  | 1968 | 739.536 | 329.673    | S  | 6.00     | S   | 36.037      | 278.952 |
| 17       1970       -       1971       542.149       329.673       S       6.00       S       35.848       132.935         18       1971       -       1972       835.568       329.673       S       6.00       S       38.908       393.363         19       1972       -       1973       530.965       329.673       S       6.00       S       36.051       146.446         20       1973       -       1974       763.613       329.673       S       6.00       S       36.051       146.446         20       1973       -       1974       763.613       329.673       S       6.00       S       36.599       340.659         21       1974       -       1975       547.365       329.673       S       6.00       S       38.62       303.501         23       1976       -       1977       185.637       164.354       F       6.00       S       31.218       0.000         24       1977       -       1978       349.363       329.673       S       6.00       S       34.118       52.351         26       1979       -       1970       491.385       329.673 </td <td>15</td> <td>1968</td> <td>-</td> <td>1969</td> <td>582.947</td> <td>329.673</td> <td>S</td> <td>6.00</td> <td>S</td> <td>36.084</td> <td>195.206</td>                                         | 15 | 1968 | -  | 1969 | 582.947 | 329.673    | S  | 6.00     | S   | 36.084      | 195.206 |
| 18       1971       -       1972       835.568       329.673       S       6.00       S       38.908       393.363         19       1972       -       1973       530.965       329.673       S       6.00       S       36.051       146.446         20       1973       -       1974       763.613       329.673       S       6.00       S       36.051       146.446         20       1974       -       1975       547.365       329.673       S       6.00       S       37.093       115.418         22       1975       -       1976       737.559       329.673       S       6.00       S       38.62       303.501         23       1976       -       1977       185.637       164.354       F       6.00       S       31.218       0.000         24       1977       -       1978       349.363       329.673       S       6.00       S       34.118       52.351         26       1979       -       1978       349.363       329.673       S       6.00       S       34.118       52.351         26       1979       -       1980       29.261       74.797                                                                                                                                                                                                           | 16 | 1969 | -  | 1970 | 950.798 | 329.673    | S  | 6.00     | S   | 37.175      | 512.011 |
| 19       1972       -       1973       530.965       329.673       S       6.00       S       36.051       146.446         20       1973       -       1974       763.613       329.673       S       6.00       S       36.599       340.659         21       1974       -       1975       547.365       329.673       S       6.00       S       37.093       115.418         22       1975       -       1976       737.559       329.673       S       6.00       S       38.62       303.501         23       1976       -       1977       185.637       164.354       F       6.00       S       28.293       0.000         24       1977       -       1978       349.363       329.673       S       6.00       S       31.218       0.000         25       1978       -       1979       491.385       329.673       S       6.00       S       34.118       52.351         26       1979       -       1980       29.261       74.797       F       2.00       F       16.503       0.000         27       1980       -       1981       290.987       135.299                                                                                                                                                                                                              | 17 | 1970 | -  | 1971 | 542.149 | 329.673    | S  | 6.00     | S   | 35.848      | 132.935 |
| 20         1973         -         1974         763.613         329.673         S         6.00         S         36.599         340.659           21         1974         -         1975         547.365         329.673         S         6.00         S         37.093         115.418           22         1975         -         1976         737.559         329.673         S         6.00         S         38.62         303.501           23         1976         -         1977         185.637         164.354         F         6.00         S         28.293         0.000           24         1977         -         1978         349.363         329.673         S         6.00         S         34.118         52.351           26         1979         -         1980         29.261         74.797         F         2.00         F         16.503         0.000           27         1980         -         1981         290.987         135.299         F         6.00         S         35.853         13.930           29         1982         -         1983         668.782         329.673         S         6.00         S         34.967                                                                                                                    | 18 | 1971 | -  | 1972 | 835.568 | 329.673    | S  | 6.00     | S   | 38.908      | 393.363 |
| 21       1974       -       1975       547.365       329.673       S       6.00       S       37.093       115.418         22       1975       -       1976       737.559       329.673       S       6.00       S       38.62       303.501         23       1976       -       1977       185.637       164.354       F       6.00       S       28.293       0.000         24       1977       -       1978       349.363       329.673       S       6.00       S       31.218       0.000         25       1978       -       1979       491.385       329.673       S       6.00       S       34.118       52.351         26       1979       -       1980       29.261       74.797       F       2.00       F       16.503       0.000         27       1980       -       1981       290.987       135.299       F       6.00       S       34.814       0.000         28       1981       -       1982       370.125       329.673       S       6.00       S       34.967       241.571         30       1983       -       1984       871.283       329.673                                                                                                                                                                                                                | 19 | 1972 | -  | 1973 | 530.965 | 329.673    | S  | 6.00     | S   | 36.051      | 146.446 |
| 22       1975       -       1976       737.559       329.673       S       6.00       S       38.62       303.501         23       1976       -       1977       185.637       164.354       F       6.00       S       28.293       0.000         24       1977       -       1978       349.363       329.673       S       6.00       S       31.218       0.000         25       1978       -       1979       491.385       329.673       S       6.00       S       34.118       52.351         26       1979       -       1980       29.261       74.797       F       2.00       F       16.503       0.000         27       1980       -       1981       290.987       135.299       F       6.00       S       328.814       0.000         28       1981       -       1982       370.125       329.673       S       6.00       S       34.967       241.571         30       1981       -       1982       370.125       329.673       S       6.00       S       34.967       241.571         30       1983       -       1983       668.782       329.673                                                                                                                                                                                                               | 20 | 1973 | -  | 1974 | 763.613 | 329.673    | S  | 6.00     | S   | 36.599      | 340.659 |
| 231976-1977185.637164.354F6.00S28.2930.000241977-1978349.363329.673S6.00S31.2180.000251978-1979491.385329.673S6.00S34.11852.351261979-198029.26174.797F2.00F16.5030.000271980-1981290.987135.299F6.00S28.8140.000281981-1982370.125329.673S6.00S34.967241.571301983-1984871.283329.673S6.00S37.846411.475311984-1985355.222329.673S6.00S37.061378.303321985-1986845.332329.673S6.00S37.061378.303331986-1987259.206278.544F6.00S30.9190.000341987-1989280.152329.673S6.00S37.7422.747351988-1989280.152329.673S6.00S37.061378.303331986-1987259.206278.544F6.00S30.9190.000341987-1989280.152329.673<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21 | 1974 | -  | 1975 | 547.365 | 329.673    | S  | 6.00     | S   | 37.093      | 115.418 |
| 24       1977       -       1978       349.363       329.673       S       6.00       S       31.218       0.000         25       1978       -       1979       491.385       329.673       S       6.00       S       34.118       52.351         26       1979       -       1980       29.261       74.797       F       2.00       F       16.503       0.000         27       1980       -       1981       290.987       135.299       F       6.00       S       28.814       0.000         28       1981       -       1982       370.125       329.673       S       6.00       S       34.967       241.571         30       1982       -       1983       668.782       329.673       S       6.00       S       37.846       411.475         31       1983       -       1984       871.283       329.673       S       6.00       S       37.846       411.475         31       1984       -       1985       355.222       329.673       S       6.00       S       37.061       378.303         32       1985       -       1986       845.332       329.673                                                                                                                                                                                                             | 22 | 1975 | -  | 1976 | 737.559 | 329.673    | S  | 6.00     | S   | 38.62       | 303.501 |
| 251978-1979491.385329.673S6.00S34.11852.351261979-198029.26174.797F2.00F16.5030.000271980-1981290.987135.299F6.00S28.8140.000281981-1982370.125329.673S6.00S35.85313.930291982-1983668.782329.673S6.00S34.967241.571301983-1984871.283329.673S6.00S37.846411.475311984-1985355.222329.673S6.00S37.061378.303321985-1986845.332329.673S6.00S37.061378.303331986-1987259.206278.544F6.00S30.9190.000341987-1988902.259329.673S6.00S37.7422.747351988-1989280.152329.673S6.00S30.9190.000361989-1990322.782261.215F4.50F24.7220.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23 | 1976 | -  | 1977 | 185.637 | 164.354    | F  | 6.00     | S   | 28.293      | 0.000   |
| 261979-198029.26174.797F2.00F16.5030.000271980-1981290.987135.299F6.00S28.8140.000281981-1982370.125329.673S6.00S35.85313.930291982-1983668.782329.673S6.00S34.967241.571301983-1984871.283329.673S6.00S37.846411.475311984-1985355.222329.673S6.00S35.2780.000321985-1986845.332329.673S6.00S37.061378.303331986-1987259.206278.544F6.00S30.9190.000341987-1988902.259329.673S6.00S37.7422.747351988-1989280.152329.673S6.00S30.5750.000361989-1990322.782261.215F4.50F24.7220.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 | 1977 | -  | 1978 | 349.363 | 329.673    | S  | 6.00     | S   | 31.218      | 0.000   |
| 271980-1981290.987135.299F6.00S28.8140.000281981-1982370.125329.673S6.00S35.85313.930291982-1983668.782329.673S6.00S34.967241.571301983-1984871.283329.673S6.00S37.846411.475311984-1985355.222329.673S6.00S35.2780.000321985-1986845.332329.673S6.00S37.061378.303331986-1987259.206278.544F6.00S30.9190.000341987-1989280.152329.673S6.00S37.7422.747351988-1989280.152329.673S6.00S30.9190.000361989-1990322.782261.215F4.50F24.7220.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25 | 1978 | -  | 1979 | 491.385 | 329.673    | S  | 6.00     | S   | 34.118      | 52.351  |
| 28       1981       -       1982       370.125       329.673       S       6.00       S       35.853       13.930         29       1982       -       1983       668.782       329.673       S       6.00       S       34.967       241.571         30       1983       -       1984       871.283       329.673       S       6.00       S       37.846       411.475         31       1984       -       1985       355.222       329.673       S       6.00       S       35.278       0.000         32       1985       -       1986       845.332       329.673       S       6.00       S       37.061       378.303         33       1986       -       1987       259.206       278.544       F       6.00       S       30.919       0.000         34       1987       -       1988       902.259       329.673       S       6.00       S       37.7       422.747         35       1988       -       1989       280.152       329.673       S       6.00       S       30.919       0.000         34       1987       -       1988       902.259       329.673                                                                                                                                                                                                             | 26 | 1979 | -  | 1980 | 29.261  | 74.797     | F  | 2.00     | F   | 16.503      | 0.000   |
| 29       1982       -       1983       668.782       329.673       S       6.00       S       34.967       241.571         30       1983       -       1984       871.283       329.673       S       6.00       S       37.846       411.475         31       1984       -       1985       355.222       329.673       S       6.00       S       35.278       0.000         32       1985       -       1986       845.332       329.673       S       6.00       S       37.061       378.303         33       1986       -       1987       259.206       278.544       F       6.00       S       30.919       0.000         34       1987       -       1988       902.259       329.673       S       6.00       S       30.919       0.000         34       1987       -       1988       902.259       329.673       S       6.00       S       37.7       422.747         35       1988       -       1989       280.152       329.673       S       6.00       S       30.575       0.000         36       1989       -       1989       280.152       329.673                                                                                                                                                                                                              | 27 | 1980 | -  | 1981 | 290.987 | 135.299    | F  | 6.00     | S   | 28.814      | 0.000   |
| 30       1983       -       1984       871.283       329.673       S       6.00       S       37.846       411.475         31       1984       -       1985       355.222       329.673       S       6.00       S       35.278       0.000         32       1985       -       1986       845.332       329.673       S       6.00       S       37.061       378.303         33       1986       -       1987       259.206       278.544       F       6.00       S       30.919       0.000         34       1987       -       1988       902.259       329.673       S       6.00       S       37.7       422.747         35       1988       -       1989       280.152       329.673       S       6.00       S       30.575       0.000         36       1989       -       1989       280.152       329.673       S       6.00       S       30.575       0.000         36       1989       -       1990       322.782       261.215       F       4.50       F       24.722       0.000                                                                                                                                                                                                                                                                                     | 28 | 1981 | -  | 1982 | 370.125 | 329.673    | S  | 6.00     | S   | 35.853      | 13.930  |
| 31       1984       -       1985       355.222       329.673       S       6.00       S       35.278       0.000         32       1985       -       1986       845.332       329.673       S       6.00       S       37.061       378.303         33       1986       -       1987       259.206       278.544       F       6.00       S       30.919       0.000         34       1987       -       1988       902.259       329.673       S       6.00       S       37.7       422.747         35       1988       -       1989       280.152       329.673       S       6.00       S       30.575       0.000         36       1989       -       1990       322.782       261.215       F       4.50       F       24.722       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29 | 1982 | -  | 1983 | 668.782 | 329.673    | S  | 6.00     | S   | 34.967      | 241.571 |
| 31       1984       -       1985       355.222       329.673       S       6.00       S       35.278       0.000         32       1985       -       1986       845.332       329.673       S       6.00       S       37.061       378.303         33       1986       -       1987       259.206       278.544       F       6.00       S       30.919       0.000         34       1987       -       1988       902.259       329.673       S       6.00       S       37.7       422.747         35       1988       -       1989       280.152       329.673       S       6.00       S       30.575       0.000         36       1989       -       1990       322.782       261.215       F       4.50       F       24.722       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 |      | -  |      |         | 329.673    |    |          |     | 37.846      | 411.475 |
| 32       1985       -       1986       845.332       329.673       S       6.00       S       37.061       378.303         33       1986       -       1987       259.206       278.544       F       6.00       S       30.919       0.000         34       1987       -       1988       902.259       329.673       S       6.00       S       37.7       422.747         35       1988       -       1989       280.152       329.673       S       6.00       S       30.575       0.000         36       1989       -       1990       322.782       261.215       F       4.50       F       24.722       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |      | -  |      |         |            |    |          |     |             | 0.000   |
| 33       1986       -       1987       259.206       278.544       F       6.00       S       30.919       0.000         34       1987       -       1988       902.259       329.673       S       6.00       S       37.7       422.747         35       1988       -       1989       280.152       329.673       S       6.00       S       30.575       0.000         36       1989       -       1990       322.782       261.215       F       4.50       F       24.722       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32 |      | -  |      |         |            | S  |          |     |             | 378.303 |
| 34         1987         -         1988         902.259         329.673         S         6.00         S         37.7         422.747           35         1988         -         1989         280.152         329.673         S         6.00         S         30.575         0.000           36         1989         -         1990         322.782         261.215         F         4.50         F         24.722         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |      | -  |      |         |            |    |          |     | 30.919      | 0.000   |
| 35         1988         -         1989         280.152         329.673         S         6.00         S         30.575         0.000           36         1989         -         1990         322.782         261.215         F         4.50         F         24.722         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |      | -  |      |         |            |    |          |     |             | 422.747 |
| 36         1989         -         1990         322.782         261.215         F         4.50         F         24.722         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |      | -  |      |         |            |    |          |     | -           | 0.000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |      | -  |      |         |            |    |          |     |             | 0.000   |
| 3/   1990   -   1991   591.112   304.273   F   6.00   S   34.717   123.649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37 | 1990 | -  | 1991 | 591.112 | 304.273    | F  | 6.00     | S   | 34.717      | 123.649 |

Table-6.13The results of simulations / working tables of Lower Orr Dam

| S.<br>No. | Y    | (ea | r    | inflow  | Irrigation<br>Demand<br>Met | S/<br>F | Drinking<br>Demand<br>Met | S/F | Evaporation | Spills  |
|-----------|------|-----|------|---------|-----------------------------|---------|---------------------------|-----|-------------|---------|
| 38        | 1991 | -   | 1992 | 502.695 | 329.673                     | S       | 6.00                      | S   | 33.178      | 149.408 |
| 39        | 1992 | -   | 1993 | 416.722 | 314.280                     | F       | 6.00                      | S   | 32.329      | 0.000   |
| 40        | 1993 | -   | 1994 | 779.071 | 318.497                     | F       | 6.00                      | S   | 35.219      | 321.701 |
| 41        | 1994 | -   | 1995 | 558.841 | 329.673                     | S       | 6.00                      | S   | 36.188      | 197.188 |
| 42        | 1995 | -   | 1996 | 738.552 | 329.673                     | S       | 6.00                      | S   | 35.967      | 289.553 |
| 43        | 1996 | -   | 1997 | 705.286 | 329.673                     | S       | 6.00                      | S   | 36.598      | 293.440 |
| 44        | 1997 | -   | 1998 | 581.199 | 329.673                     | S       | 6.00                      | S   | 37.128      | 144.253 |
| 45        | 1998 | -   | 1999 | 316.153 | 326.854                     | F       | 6.00                      | S   | 29.086      | 0.000   |
| 46        | 1999 | -   | 2000 | 715.313 | 292.707                     | F       | 5.50                      | F   | 35.179      | 241.833 |
| 47        | 2000 | -   | 2001 | 498.219 | 329.673                     | S       | 6.00                      | S   | 36.84       | 123.737 |
| 48        | 2001 | -   | 2002 | 437.922 | 329.673                     | S       | 6.00                      | S   | 35.417      | 19.741  |
| 49        | 2002 | -   | 2003 | 351.51  | 327.453                     | F       | 6.00                      | S   | 29.024      | 0.000   |
| 50        | 2003 | -   | 2004 | 684.82  | 293.872                     | F       | 6.00                      | S   | 34.797      | 219.970 |
| 51        | 2004 | -   | 2005 | 449.515 | 329.673                     | S       | 6.00                      | S   | 35.961      | 59.411  |
| 52        | 2005 | -   | 2006 | 447.243 | 329.673                     | S       | 6.00                      | S   | 35.843      | 34.672  |
| 53        | 2006 | -   | 2007 | 528.42  | 329.673                     | S       | 6.00                      | S   | 35.457      | 109.203 |
| 54        | 2007 | -   | 2008 | 291.339 | 282.375                     | F       | 5.00                      | F   | 24.263      | 0.000   |
| 55        | 2008 | -   | 2009 | 403.35  | 329.673                     | S       | 6.00                      | S   | 28.733      | 0.000   |

\* S: Success F: Failure

#### 6.1.10 Water Planning

As per simulation study of Lower Orr reservoir, about 335.67 MCM of water can be utilized in to Lower Orr Left bank canal from Lower Orr reservoir after meeting the upstream demand and releasing about 44.898 MCM water for environmental and ecological purposes. The evaporation losses for the reservoir have already been considered in the simulation study. Provision of 6 MCM (@ 0.5 MCM per month) of water is kept for drinking purpose in the enroute villages/towns. Therefore, remaining 329.67 MCM of water is available for irrigation and using 0.5106 m Delta for traditional irrigation system and 0.397 m Delta for pressurized irrigation system, about 67570 ha (45047 CCA) can be irrigated from the Lower Orr dam. Out of which, about 33677 ha CCA (50516 ha annual irrigation) using 257.96 MCM of water is proposed to be irrigated in the command by traditional irrigation. Besides above, about 2950 ha CCA (4425 ha annual irrigation) will be covered in the vicinity of the Lower Orr main canal in the

initial reaches of 50 km length through pumping by the local people. Out of which 2360 ha CCA (3540 ha annual irrigation) will be covered by traditional irrigation using 18.08 MCM of water. Provision of 53.64 MCM water has been kept for pressurized irrigation in the Shivpuri district for irrigating about 9009 ha (13514 ha annual irrigation) which is about 20% of total CCA of 45047 ha.

## 6.1.11 Introduction of Pressurized Irrigation System in the command area

The pressurized irrigation, which is also known as micro irrigation, consists of drip and sprinkler irrigation systems. One of the demand management strategies introduced recently to control water consumption in Indian agriculture is pressurized irrigation or microirrigation. Under micro-irrigation, unlike flood methods of irrigation, water is supplied at a required interval and quantity using pipe network, emitters and nozzles. Therefore, the conveyance and distribution losses are reduced completely which results in higher water use efficiency under microirrigation. Incidentally the micro-irrigation also effectively controls the problem of water logging and salinity in the command area of an irrigation project. In view of the above cited advantage of micro-irrigation over flood irrigation method the Government of India is promoting micro-irrigation in the command area of major and medium irrigation projects. So it is proposed to provide pressurized irrigation system in 20% area of command of this project as a pilot scheme. Accordingly 9009 ha area (about 20% of 45047 ha CCA) is proposed under Lower Orr Project under pressurized Main crops namely Maize, Jowar, Fodder, irrigation. Pulses, Groundnut/Oilseed and Vegetables are in Kharif season, Wheat, Gram, Vegetables and sunflower/oilseed are suggested in Rabi season and Sugarcane as perennial crop are suggested through channel irrigation in the proposed command area in Shivpuri district of Madhya Pradesh. The sprinkler irrigation system can be introduced for these crops except for Jowar and Sugarcane. Drip irrigation is suitable for horticulture crops such as Commercial crops, Vegetables, tuber crops, Leafy vegetables, Fruits, Spices & Condiments, and Medicinal Plants. Since, drip irrigation is not familiar in the area, few patches may be added for drip irrigation as a model.

Beside above crops, suggested under canal irrigation, some, commercial crops and fruits etc. may be introduced in the area proposed under pressurized irrigation. About 40% and 70% water will be saved by sprinkler irrigation and drip irrigation system respectively. Therefore, cropping pattern suggested in consultation with the Agriculture Department of MP (Krasi Vigyan Kendra) for 9009 ha of command is proposed under pressurized irrigation.

#### 6.1.12 Designed head discharge of canal system

The capacity at the canal head of Lower Orr Left bank canal is 31.80 cumecs. A provision of 10% irrigation demand has been made towards rush irrigation demand in canal capacity.

### 6.1.13 Details of distributary wise command area of Lower Orr Project

Nineteen (19) distributary/minors are proposed along the Lower Orr Left bank canal for releasing waters to the command area from the canal. Distributary wise command areas of Lower Orr project are furnished in Annexure 6.1.6 of Volume – II.

#### 6.1.14 Ground water

#### 6.1.14.1 Conjunctive use/ground water support

The National Water Policy 2012 recognized the need for conjunctive use and recommended that the conjunctive use of surface and ground water should be ensured from project planning stage and should form an essential part of the irrigation project. This will ensure optimum utilization of water resources in the command area and permits flexibility of system operation. With the increasing irrigation intensity and tendency on the part of the farmers to over supply irrigation from surface water, the problem of water logging and salinity is growing in the irrigated commands. The conjunctive use of surface and ground water is planned to mitigate the effects of deficits of canal water supplies, increase dependability of existing water availability, alleviate problems of rising water levels, soil salinity, minimize damages due to drought and increase agricultural productivity. Conjunctive use of surface and groundwater may be planned as sufficient balance replenishable groundwater is available in the command area.

Ground water resources for the Shivpuri district of Lower Orr command has been assessed as per guideline adopted by Central Ground Water Board are given in Annexure 6.1.7 of Volume – II. In the present planning, use of ground water is not proposed in any of the command. However, the available ground water resource can be utilized in future for further intensification or augmentation of the irrigation facilities in various commands, particularly to meet the irrigation requirement during lean season.

#### 6.1.15 Command Area Development

#### 6.1.15.1 Details of Lower Orr command

#### (i) Location

The command area of Lower Orr reservoir lies in the Khaniyadana, Pichhore and Karera tehsils of Shivpuri district of Madhya Pradesh. The CCA under this project is 45047 ha.

## 6.1.15.2 Classification of land (forest, grass land, cultivable and, cultivable waste, barren land)

The classification of land in the command area is furnished in Table-6.14.

#### Table - 6.14

#### Land use deatils of Lower Orr command for the Year 2008-09 (maximum of five years from 2007-08 to 2011-12)

| S. No. | Details                                      | Area (ha) | % of GCA |
|--------|----------------------------------------------|-----------|----------|
| 1      | Forest                                       | 30210     | 35.26    |
| 2      | Area under non-agricultural use              | 5051      | 5.90     |
| 3      | Barren and unculturable land                 | 3176      | 3.71     |
| 4      | Permanent pastures and other grazing land    | 2187      | 2.55     |
| 5      | Land under miscellaneous crop trees & groves | 325       | 0.38     |
| 6      | Culturable waste land                        | 6070      | 7.08     |

| S. No. | Detrails                 | Area (ha) | % of GCA |
|--------|--------------------------|-----------|----------|
| 7      | Other fallows            | 2519      | 2.94     |
| 8      | Current fallows          | 1697      | 1.98     |
| 9      | Net area sown            | 34437     | 40.20    |
| 10     | Area sown more than once | 10996     | 12.84    |
| 11     | Total cropped area       | 45433     | 53.03    |
| 12     | Culturable area          | 45047     | 52.58    |
| 13     | Total Geographical area  | 85672     | 100.00   |

#### 6.1.15.3 Size of land holding

The size of land holding and area in Shivpuri district which falls in the Lower Orr reservoir command area during the year 2005-06 is given in **Table-6.15**.

#### Table - 6.15

#### Size of land holding in Shivpuri district of Lower Orr reservoir command

| ••••••••                                 |              |        |  |  |  |  |  |  |
|------------------------------------------|--------------|--------|--|--|--|--|--|--|
| Description                              | Land holding |        |  |  |  |  |  |  |
|                                          | No.          | Area   |  |  |  |  |  |  |
| Marginal farmers less than 1 ha          | 93000        | 50800  |  |  |  |  |  |  |
| Small farmers more than 1 ha less than 2 | 69303        | 96834  |  |  |  |  |  |  |
| ha                                       |              |        |  |  |  |  |  |  |
| Below medium farmers 2-4 ha              | 49165        | 134680 |  |  |  |  |  |  |
| Medium farmers 4-9.99 ha                 | 23751        | 136467 |  |  |  |  |  |  |
| Big farmer 10 to 20 ha                   | 3502         | 55652  |  |  |  |  |  |  |
| Total                                    | 238721       | 474433 |  |  |  |  |  |  |

#### 6.1.16 Climate of the command area

(a) **Rainfall:** The command area receives most of its rainfall during the monsoon from July to September from the southwest monsoon. The maximum and minimum rainfall of Jhansi IMD station is 1495.80 mm to 314.7 mm respectively.

(b) **Temperature:** The climate of the area is characterized by a hot summer and a mild winter. The climate is hot during summer with the temperature of Jhansi IMD station as high as 45.4 <sup>o</sup>C and lowest is 3.8 <sup>o</sup>C.

(c) **Relative humidity:** The mean monthly relative humidity observed at Jhansi IMD observatory, which is close to the command area varies between 76% to 18%.

(d) Wind velocity: The monthly mean wind velocity observed at Jhansi IMD observatory varies between 2.8 km/hr to 6.7 km/hr.

#### 6.1.17 Irrigation

#### (a) Present sources of irrigation in the command

The present sources of irrigation in the proposed command area are mainly through age-old tanks and ponds, which collect the rainwater during the monsoon season. Besides these, privately owned open wells and tube wells also provide water for irrigation to very small areas.

#### (b) Methods of irrigation followed

At present, the conventional method of applying water through minor irrigation channels, distributaries and water courses is being followed in this area. However, sometimes electric/diesel pump sets are also used to lift water from the wells.

#### (c) Status of land development for irrigated area

#### (i) Condition of channels

The condition of existing irrigation channels in the command area is generally satisfactory except in some reaches where proper maintenance is required. Most of the channels are unlined, hence susceptible to loss of water through seepage.

#### (ii) Longitudinal slope of field

The slopes in agricultural fields where irrigation channels are located, are adequate and irrigation water reaches almost every nook and corner of the field.

#### (iii) Status of field channels

Field channels constructed by farmers for irrigating land by pumping river water are found to be existing in some areas.

#### 6.1.18 Socio-economic aspects

Govt. of Madhya Pradesh has carried out the Socio-economic aspects study for the Lower Orr reservoir through Hamidia College, Bhopal. The details of socio-economic aspects are furnished in **Table-6.16**.

 Table - 6.16

 Socio-economic aspects in the Lower Orr reservoir command

| S. | Description                       | Shivpuri |
|----|-----------------------------------|----------|
| No |                                   |          |
| 1  | Population density per sq.km.     | 171      |
| 2  | Sex ratio (females per 1000 male) | 877      |
| 3  | SC                                | 18.78 %  |
| 4  | ST                                | 11.19 %  |
| 5  | Literacy rate                     | 62.55%   |

#### 6.1.19 Infrastructure facilities

#### (a) Roads and railways

Shivpuri district headquarters is well connected by rail and roads. However, the roads in rural areas are generally kachcha roads.

#### (b) Marketing facilities

Most of the villages in the command are dependent on the marketing facilities available in Shivpuri, Jhansi and Gwalior district headquarters.

#### (c) Agro-industries

No major agro-based industries are available within the command. However few oil mills and flour mills are located in the command which cater the needs of common people.

#### (d) Banks/credit societies etc.

Nationalized Banks exist at district & tehsil head quarters. However, few Gramin Banks are also functioning in rural areas.

#### 6.1.20 Topography and soils

#### (i) Topography

Isolated hill tops, valleys, forests and streams are dominating in the area. Coarse grained formations are predominantly found in the command area.

#### (ii) Land slopes

The slopes of the land in the command area are moderate and in few places, it is steep.

#### (iii) Soils

Based on the information provided by National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, the soils in the Lower Orr command area in Shivpuri district can be broadly classified into ten categories. Details are furnished below:

1. Moderately deep, well drained, calcareous, clayey soils on gently sloping undulating plateau with severe erosion, associated with: Shallow, somewhat excessively drained, loamy-skeletal soils on gently sloping with severe erosion and slightly stony.

2. Very shallow, well drained, loamy soils on moderately sloping residual hills with isolated hillocks with severe erosion, associated with: Shallow, well drained loamy soils on gently sloping with severe erosion and slightly stony.

3. Very shallow, somewhat excessively drained, loamy soils on moderately sloping residual hills with dykes with severe erosion and strongly stony, associated with: Shallow, somewhat excessively drained, loamy soils on moderately steep sloping with severe erosion and moderately stony

4. Slightly deep, well drained loamy soils on gently sloping undulating upland with mounds with moderate erosion, associated with:

Shallow, somewhat excessively drained, loamy soils on gently sloping with severe erosion

5. Very shallow, well drained, loamy soils on gently sloping undulating upland (slightly dissected) with severe erosion, associated with: Moderately deep, well drained, clayey soils on very gently sloping with moderate erosion.

6. Shallow, well drained, loamy soils on gently sloping undulating upland with valleys with moderate erosion associated with: Moderately deep, well drained, sandy soils on gently sloping with severe erosion and slightly stony.

7. Shallow, well drained, loamy soils on gently sloping undulating upland with valleys with moderate erosion associated with: Very shallow, well drained, loamy soils on moderately sloping with severe erosion.

8. Slightly deep, well drained loamy soils on gently sloping plain land with moderate erosion, associated with: Moderately deep, somewhat excessively drained, sandy soils on moderately sloping with severe erosion.

9. Slightly deep, well drained, loamy soils on gently sloping plain land (slightly dissected) with severe erosion, associated with: Moderately deep, well drained, loamy soils on very gently sloping with moderate erosion.

10. Deep, well drained, calcareous clayey soils on moderately sloping Flood plain (moderately dissected) with severe erosion, associated with: Deep, well drained, calcareous loamy soils on moderately steep sloping with very severe erosion.

#### 6.1.21 Drainage

The command area has good surface drainage and sub-surface drainage. The water holding capacity being low to medium is expected in clay patches. With the network of a number of tributaries namely Newman, Sagar, Bah, Keotan etc., the command area has quite good draining facilities.

#### 6.1.22 Agriculture

The classification of lands and the present land use has already been discussed in the chapter. Land use will change due to increase in cultivated area and increase in developmental activities due to this project.

#### 6.1.23 Farmers' attitude towards improved agricultural practices

The farmers' attitude towards improved agricultural practices is positive. However, due to non-availability of water even from the existing tanks, they find it difficult to carry out cultivation in the entire area.

#### (i) Use of improved implements and seeds

The use of bullock power for ploughing of land is common in the area of proposed command. The use of tractor is also done in these areas but the percentage is very low. Likewise, the use of traditional types of implements is also very common among majority of the farmers.

#### (ii) Use of fertilizers, insecticides, pesticides, etc.

Although about 25% of the farmers use fertilizers and manures for increasing the yield, very few of them are particular about use of insecticides/pesticides for control of plant diseases.

#### (iii) Extension services

Occasional extension services are provided by the State Agriculture Department to educate the farmers about the use of improved and modern agriculture technology and cultivation of high value crops viz. Groundnut, Soyabean, Sunflower, Chillies etc. But due to various reasons including inadequate financial resources, the extension services are yet to become popular among the farmers of proposed command area.

#### 6.1.24 Identification of problems in command area

(i) Land slopes: The land is generally undulating; therefore, canal distribution system has to be aligned accordingly.

(ii) Soil depth: There should be no problem on this account, as sufficient soil depth is available in the area for providing canal irrigation.

(iii) Salinity/Alkalinity: Since the Lower Orr river water is proposed to be used for irrigation in these areas, which does not have

salinity problem, it need not be a cause of concern. However, slight alkaline nature of the soils of the region is considered rather suitable for crops like Jowar, Soyabean, Wheat and Moong.

In general, the soils in these areas are stable and not prone to erosion. However, in certain area, the soils may be prone to erosion due to their coarse texture. Such soils can be stabilized by putting them under permanent pastures and grazing lands.

(iv) Water logging: No water-logging problem of serious nature has been reported from the area.

(v) **Drainage:** Looking the general condition and topography of the command special care should be taken for construction of field channels and drainage, which can be managed by the Agricultural Department at farmer's cost or loans from the various land development banks.

#### 6.1.25 Financial problems

There are number of wells and tanks in the area but due to less recharge in the area, these wells and tank either have less water or no water during lean season. Farmers should be provided fund assistance for renovation of these tanks and wells for better irrigation.

### 6.1.26 Proposed cropping pattern, with justification based on land irrigability classification, agro climatic conditions developed irrigated cropping pattern in adjoining project/area etc.

Proposed cropping pattern of Lower Orr command has been suggested by Agriculture Department, Govt. of Madhya Pradesh on the basis of Land irrigation and capability classification of the area and crops grown presently in the surrounding of the command of Lower Orr Project.

#### 6.1.27 Land development work proposals

A provision of Rs. 1126 lakh has been kept in the estimate for land development works. At the time of implementation of the project, detailed survey of each command will be done and based on the requirement land development works will be taken up. This work will be done by State Irrigation Department or State Agriculture Department or Command Area Development Authority (to be decided by State Government).

At present fairly good extension services exist in the command area and number of commercial banks and co-operative banks have their branches there. Branches of land development banks are also located in some rural areas of the command. Moreover, the agricultural materials like seeds, fertilizers, insecticide, pesticides etc. are provided to the farmers by the concerned government department at subsidized rates through different sale booths or fair price shops. However, due to numerous reasons, especially inadequacy of financial resources, extension services have not yet become very popular.

#### 6.1.28 Ayacut roads

Suitable provision of CD structures will be made to avoid traffic disruptions through Ayacut roads.

#### 6.1.29 Benefits

## (i) Crop wise increase in yield per ha and total estimated output from the command

The per hectare yield of various crops in the Shivpuri district is suggested by the Agriculture department of Govt. of Madhya Pradesh. The same is given at Annexure 6.1.8 of Volume – II. The crop wise yield in pre & post project scenarios are given in Table-6.17.

| C   | Name         Pre project scenario         Post project scenario |        |           |         |         |            |          |  |  |
|-----|-----------------------------------------------------------------|--------|-----------|---------|---------|------------|----------|--|--|
| S.  | Name                                                            | Pre pl | roject sc | enario  | Post p  | project sc | enario   |  |  |
| No. | of crop                                                         | Area   | Yield     | Gross   | Area of | Yield      | Gross    |  |  |
|     |                                                                 | (ha)   | Qtls /    | yield   | (ha)    | Qtls /     | yield in |  |  |
|     |                                                                 |        | ha        | in Qtls |         | ha         | Qtls     |  |  |
| A   | Kharif                                                          |        |           |         |         |            |          |  |  |
| 1   | Paddy                                                           | 631    | 15        | 9465    | 360     | 50         | 18000    |  |  |
| 2   | Jowar                                                           | 90     | 12        | 1080    | 1802    | 35         | 63070    |  |  |
| 3   | Maize                                                           | 1532   | 14        | 21448   | 1802    | 40         | 72080    |  |  |
| 4   | Bajra                                                           | 676    | 0         | 0       | 0       | 0          | 0        |  |  |
| 5   | Other pulses                                                    | 1441   | 5         | 7205    | 9460    | 15         | 141900   |  |  |

**Table - 6.17** 

Cropwise yield under pre and post project scenarios

| 6  | Soyabean           | 11081 | 8   | 88648  | 7478  | 23  | 171994  |
|----|--------------------|-------|-----|--------|-------|-----|---------|
| 7  | Ground nut         | 6892  | 10  | 68920  | 4775  | 22  | 105050  |
| 8  | Vegetable          | 406   | 30  | 12180  | 1892  | 50  | 94600   |
| 9  | Til (Sesamum)      | 901   | 4   | 3604   | 0     | 9   | 0       |
| 10 | Other crops/spices | 0     | 4   | 0      | 540   | 9   | 4860    |
| 11 | Other kharif       | 0     | 200 | 0      | 2342  | 500 | 1171000 |
|    | (Fodder)           |       |     |        |       |     |         |
|    | Total              | 23650 |     |        | 30451 | 0   | 1842554 |
| В  | Rabi               |       |     |        |       |     |         |
| 1  | Wheat              | 12973 | 15  | 194595 | 28380 | 40  | 1135200 |
| 2  | Barley             | 90    | 9   | 810    | 0     | 19  | 0       |
| 3  | Gram               | 3469  | 8   | 27752  | 6757  | 20  | 135140  |
| 4  | Mustard            | 2658  | 6   | 15948  | 0     | 16  | 0       |
| 5  | Other pulses       | 450   | 5   | 2250   | 0     | 12  | 0       |
| 6  | Tur                | 90    | 5   | 450    | 0     | 20  | 0       |
| 7  | Fodder crops       | 1532  | 200 | 306400 | 0     | 400 | 0       |
| 8  | Vegetable          | 45    | 30  | 1350   | 901   | 50  | 45050   |
|    | Total              | 21307 |     |        | 36038 |     | 1315390 |
| С  | Perennial          |       |     |        |       |     |         |
| 1  | Sugarcane          | 90    | 200 | 18000  | 1081  | 500 | 540500  |
|    | Total              | 45047 |     |        | 67570 |     | 3698444 |

#### (i) Estimated cost of increased production

The yield in pre and post project scenarios has been assessed in Table-6.17. Based on the increased production, cost of increased production has been assessed in Annexure 10.6.4 of Volume - II.

#### (ii) Likely socio-economic aspects

Due to increase in food grain production, the socio-economic condition of farmers will improve in general. Agricultural labourers will get employment in the nearby area. Situation of livestock will improve. Farmers will try to establish agro-based industries in the area.

#### 6.2 Details of four barrages proposed in Upper Betwa region

#### 6.2.1 Existing /proposed irrigation facilities

Since all the four barrages are proposed in the Upper Betwa catchment (upto Rajghat dam), combined description is furnished in the following paragraphs. The geographical area of Upper Betwa sub-basin is 16,87,650 ha, out of which culturable land is 10,97,695 ha. The irrigation from existing, ongoing and proposed projects in the catchment is given in Table-6.18.

#### Table - 6.18

Details of areas irrigated by existing, ongoing and proposed projects in Upper Betwa basin

| S.  | Status of the project | Area irrigated | Water use |
|-----|-----------------------|----------------|-----------|
| No. |                       | (ha)           | (MCM)     |
| 1.  | Existing              | 70,071         | 535.24    |
| 2.  | Ongoing               | 49,261         | 381.56    |
| 3.  | Proposed              | 4,89,557       | 2973.15   |
|     | Total                 | 6,08,889       | 3889.95   |

#### 6.2.1.1 Source wise irrigation in the Upper Betwa region

Main sources of irrigation in upper Betwa region are canal, tanks, open wells, tube wells and other sources. Since all the barrages are proposed in Raisen and Vidisha districts of MP, the details of source wise irrigation in the districts are furnished in Table-6.19.

#### Table - 6.19

### Source wise irrigation in the Raisen and Vidisha districts of Madhya Pradesh for year of 2011-12

Unit in ha

|           |                       |        |          | ι                | пи па па |  |
|-----------|-----------------------|--------|----------|------------------|----------|--|
| S.<br>No. | Source of irrigation  | Raisen | district | Vidisha district |          |  |
| 1         | Geographical area     | 846    | 600      | 737100           |          |  |
| 2         | Gross cropped area    | 284    | 354      | 307550           |          |  |
| 3         | Sourcewise irrigation | Gross  | Net      | Gross            | Net      |  |
| i)        | Canals                | 76387  | 76387    | 34674            | 34674    |  |

| ii)  | Tanks          | 7653   | 7653   | 7052   | 7052   |
|------|----------------|--------|--------|--------|--------|
| iii) | Tube Wells     | 112243 | 112243 | 77137  | 77137  |
| iv)  | Ordinary Wells | 47678  | 47678  | 61996  | 61996  |
| v)   | Other sources  | 40393  | 40393  | 126691 | 126691 |
|      | Total          | 284354 | 284354 | 307550 | 307550 |

#### 6.2.2 Existing Cropping pattern

The existing cropping pattern in command areas of Neemkheda, Barari, Kotha and Kesari barrages in Upper Betwa sub-basin is given in Table-6.20.

#### **Table - 6.20**

### Existing cropping pattern in Upper Betwa sub-basin for the year 2011-12

| S.No. | Name of crops  | % age of area of       | % age of area of |  |  |
|-------|----------------|------------------------|------------------|--|--|
|       |                | <b>Raisen district</b> | Vidisha district |  |  |
| Α     | Kharif         |                        |                  |  |  |
| 1     | Paddy          | 4.6                    | 0.1              |  |  |
| 2     | Jowar          | 0.0                    | 0.0              |  |  |
| 3     | Maize          | 0.6                    | 0.4              |  |  |
| 4     | Bajra          | 0.0                    | 0.0              |  |  |
| 5     | Other pulses   | 0.6                    | 6.2              |  |  |
| 6     | Soyabean       | 27.6                   | 30.7             |  |  |
| 7     | Cotton (Fiber) | 0.0                    | 0.0              |  |  |
| 8     | Ground nut     | 0.0                    | 0.2              |  |  |
| 9     | Vegetable      | 0.4                    | 0.2              |  |  |
| 10    | Til (Sesamum)  | 0.0                    | 0.0              |  |  |
| 11    | Other kharif   | 0.0                    | 0.0              |  |  |
|       | Total          | 33.8                   | 37.8             |  |  |
| B     | Rabi           | 35.0                   | 30.8             |  |  |
| 1     | Wheat          | 0.0                    | 0.0              |  |  |
| 2     | Barley         | 17.6                   | 21.1             |  |  |
| 3     | Gram           | 0.0                    | 0.1              |  |  |
| 4     | Mustard        | 0.1                    | 0.0              |  |  |

| 5  | Linseed        | 0.0  | 0.0  |
|----|----------------|------|------|
| 6  | Other oilseeds | 5.6  | 8.4  |
| 7  | Other pulses   | 0.0  | 0.0  |
| 8  | Other Rabi     | 6.6  | 0.8  |
| 9  | Tur            | 1.0  | 0.8  |
| 10 | Fodder crops   | 0.1  | 0.2  |
| 11 | Vegetable      | 66.0 | 62.2 |
|    | Total          |      |      |
| С  | Perennial      |      |      |
| 1  | Sugarcane      | 0.2  | 0.0  |
|    | Total          | 100  | 100  |

## 6.2.3 Rainfall during monsoon (Maximum, Minimum & Normal rainfall)

The average annual rainfall in the Upper Betwa sub basin is 1120 mm out of which the monsoon rainfall is 1064 mm. The rainfall generally increase from North - West to South - East in the Sub basin. About 95% of the annual rainfall occurs in monsoon period (June to October). The variation in the annual rainfall is appreciable in the sub-basin, the maximum rainfall of 1708.33 mm occurred in the year 1969-70 and the minimum rainfall of 608.2 mm occurred in the year 1979-80.

# 6.2.3.1 Rainfall during non-monsoon (Maximum, Minimum & Normal rainfall)

Very little rainfall occurs during the period from October to March in Upper Betwa sub-basin. The average non-monsoon rainfall is about 56 mm.

#### 6.2.4 Soil Survey

#### 6.2.4.1 Soil capability classification

Soil survey in the command area was carried out by the State Agriculture Department and a preliminary report had been submitted by the Joint Director of Agriculture, Sagar district. The water holding capacity is low to medium. The pH value of the soil is between 7 to 8. The soils have good response to fertilizers and irrigation.

#### 6.2.4.2 Land irrigability classification

Land irrigability & capability classification has been carried out by State Government in respect upper Betwa command at the time of preparation of DPR of Ken-Betwa Link Project during 2008. The same has been placed at Annexure: 6.2.1 & 6.2.2 of Volume – II. Land irrigability classification and land capability classification carried out for Makodia dam (now dropped) is now being considered for nearest Neemkheda barrage.

#### 6.2.4.3 Land use particulars of Raisen and Vidisha districts

The proposed command area of the barrages lies in the Raisen and Vidisha district of Madhya Pradesh. The land use particulars' of Raisen and Vidisha districts are given in Table-6.21.

|          |                                                 |                                      |                                   | Unit i                                   | n ha                              |
|----------|-------------------------------------------------|--------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------|
| S.<br>No | Particulars                                     | Raisen<br>for the<br>year<br>2008-09 | % of<br>Geogra-<br>phical<br>area | Vidisha<br>for the<br>year of<br>2007-08 | % of<br>Geogra-<br>phical<br>area |
| 1        | Forest                                          | 331504                               | 39.16                             | 116518                                   | 15.81                             |
| 2        | Area under non-agricultural use                 | 39800                                | 4.70                              | 38843                                    | 5.27                              |
| 3        | Barren and unculturable land                    | 3496                                 | 0.41                              | 8243                                     | 1.12                              |
| 4        | Permanent pastures and other grazing land       | 24455                                | 2.89                              | 21243                                    | 2.88                              |
| 5        | Land under miscellaneous<br>crop trees & groves | 105                                  | 0.01                              | 183                                      | 0.02                              |
| 6        | Culturable waste land                           | 10186                                | 1.20                              | 14249                                    | 1.93                              |
| 7        | Other fallows                                   | 2670                                 | 0.32                              | 3321                                     | 0.45                              |
| 8        | Current fallows                                 | 907                                  | 0.11                              | 2348                                     | 0.32                              |
| 9        | Net area sown                                   | 433477                               | 51.20                             | 532152                                   | 72.20                             |
| 10       | Area sown more than once                        | 128404                               | 15.17                             | 196722                                   | 26.69                             |
| 11       | Total cropped area                              | 561881                               | 66.37                             | 728874                                   | 98.88                             |
| 12       | Culturable area                                 | 447345                               | 52.84                             | 552253                                   | 74.92                             |
| 13       | Total Geographical area                         | 846600                               | 100                               | 737100                                   | 100                               |

## Land use particulars of the districts of Raisen and Vidisha (maximum of five years from 2007-08 to 2011-12)

#### 6.2.5 Proposed Command for Upper Betwa barrages

Four barrages have been proposed in the upper Betwa Command. These are Kesari barrage on Keotan River, a tributary of Betwa River, three barrages namely Neemkheda, Barari and Kotha on Betwa River. The simulation of all these barrages have been carried out by NIH, Roorkee and as per availability of water, the annual irrigation under these barrages works out to 31276 ha. Intensity of irrigation in case of Kesari and Kotha is 140% & 125% respectively, where as that in respect of remaining two barrages proposed of Betwa River is 100%.

### 6.2.5.1 Scope for double and multiple cropping pattern and change in cropping pattern on the basis of latest available data

Since intensity of Irrigation in Upper Betwa command is more than 100%, double cropping pattern is feasible in these areas. So far cropping pattern is concerned, it has been adopted as per the suggestion of State Agricultural Department.

#### 6.2.5.2 Soils

Following type of soils exist in Upper Betwa command:

**1. Deep Black soils** – These soils are generally found in Raisen, Vidisha, Bhopal and Sagar districts of MP

**2.** Medium Black soils - These soils are found in Vidisha, Sagar, Guna and Bhopal districts of MP

**3.** Skeletal soil – This type of soil is found in very small patch in Raisen district.

#### 6.2.5.3 Agro – climatic conditions

As per agro climatic zoning of Madhya Pradesh, the upper Betwa command falls in Vidisha district and Raisen district which is deficit in water. The climate of the region is tropical. The climate remains hot and is pleasant in winter. The temperature normally varies from  $45^{\circ}$ C in summer to  $4^{\circ}$ C in winter.

#### 6.2.5.4 Water and other inputs like seeds, fertilizers etc.

It is seen from the survey conducted by the NCAER that the farmers use sufficient inputs to take full advantage of the good situation particularly in irrigation condition. The use of manure and fertilizers is common in all the areas. Similarly, the use of pesticides and weedicides is also popular in the command areas. It also confirms the use of modern agricultural technology in the proposed command areas.

#### 6.2.5.5 Irrigation crops in the adjoining area

The irrigated crops grown in the adjoining area of command are mainly Paddy, Jowar, Bajra, Maize, Arhar, Wheat, Pulses, Potato and other green vegetables. In some areas, farmers have switched over to cash crops due to availability of irrigation facilities.

## 6.2.5.6 Attitude of farmers towards modern irrigated agricultural practices

The proposed command area lies in Raisen and Vidisha districts of Madhya Pradesh and the economic condition of farmers is inferior. Therefore, majority of farmers are keen to adopt modern agricultural practices, which would naturally improve their economic condition through better and efficient irrigation.

#### 6.2.6 Barrage wise Command Area Details

#### 6.2.6.1 Neemkheda barrage

The command area of Neemkheda barrage is in the vicinity of pondage of barrage and lies in Raisen district of Madhya Pradesh. The gross command area under Neemkheda barrage is 5802 ha. As per land use statistics of the year of 2008-09 (maximum five years from 2007-08 to 2011-12) the culturable command area in the district is 52.84%. Geographical area of Raisen district is 846600 ha. The gross command area of the project is about 0.69% of geographical area of the Raisen district.

#### 6.2.6.2 Barari Barrage

The command area of Barari barrage has been identified under Barari canal which lies in Vidisha district of Madhya Pradesh. The gross command area under Barari barrage is 5932.26 ha. The gross command area of the project is about 0.81% of geographical area of the Vidisha district.

#### 6.2.6.3 Kotha Barrage

The command area of Kotha barrage is in the vicinity of pondage of barrage and with the canal system lies in Vidisha district of Madhya Pradesh. The gross command area under Kotha barrage is 23167.38 ha. The gross command area of the project is about 3.14 % of geographical area of the Vidisha district.

#### 6.2.6.4 Kesari Barrage

The command area of Kesari barrage is identified under Right Bank canal lies in Vidisha district of Madhya Pradesh. The gross command area under Kesari barrage is 1973.44 ha. The gross command area of the project is about 0.27% of geographical area of the Vidisha district.

#### 6.2.7 Proposed cropping pattern and crop water requirement

The cropping pattern and month wise crop water requirement of the 3 barrages namely Barari, Kotha and Kesari have been duly approved by Govt. of Madhya Pradesh and are furnished in Annexure: 6.2.3.1 to 6.2.3.3 of Volume – II. However, the cropping pattern and month wise crop water requirement for the Neemkheda barrage has not been received from Govt. of Madhya Pradesh. Therefore, the cropping pattern and month wise crop water requirement for the Neemkheda barrage has been considered similar to the nearest Parariya barrage and furnished in Annexure: 6.2.3.4 of Volume – II.

#### 6.2.8. Neemkheda Barrage

#### 6.2.8.1 Proposed cropping pattern

The proposed cropping pattern for providing irrigation in the command under Neemkheda barrage is given in Table-6.22.

| S. No. | Сгор       | Area | Crop Period                                   |
|--------|------------|------|-----------------------------------------------|
|        | Rabi       |      |                                               |
| 1      | Wheat      | 613  | 1 <sup>st</sup> Nov to 20 <sup>th</sup> March |
| 2      | Hyv. Wheat | 1528 | 1 <sup>st</sup> Nov to 10 <sup>th</sup> March |
| 3      | Gram       | 925  | 1 <sup>st</sup> Nov to 1 <sup>st</sup> March  |
|        | Total      | 3066 |                                               |

 Table-6.22

 Proposed cropping pattern in the command of Neemkheda barrage

#### 6.2.8.2 Crop Water Requirement

The crop water requirement for the Neemkheda Barrage command (CCA 3066 ha) has been computed by Modified Penman Method as per the methodology given in the Technical Series-II, a publication of the erstwhile Ministry of Irrigation. The irrigation demand for Neemkheda Barrage command works out as 16.609 MCM.

#### 6.2.8.3 Reference Potential Evapo-transpiration (ETo)

A copy of the Scientific Report No. 136 (February 1971) has been obtained from IMD regarding Potential Evapo-transpiration over India. The Reference Evapo-transpiration (ETo) values in mm for Bhopal IMD station (near to Raisen district) of Madhya Pradesh is tabulated in Table-6.23 and have been considered in the crop water requirement computation.

#### Table-6.23

#### **Evapo-transpiration (ETo) values for Bhopal IMD station**

| Month  | Jan  | Feb  | Mar | Apr | May | Jun | Jul   | Aug   | Sep   | Oct   | Nov  | Dec  | Total  |
|--------|------|------|-----|-----|-----|-----|-------|-------|-------|-------|------|------|--------|
| ETo in |      |      |     |     |     |     |       |       |       |       |      |      |        |
| mm     | 79.6 | 99.4 | 149 | 183 | 236 | 191 | 118.4 | 104.9 | 115.3 | 119.6 | 85.5 | 70.5 | 1553.5 |

#### 6.2.8.4 Crop Coefficients

Crop coefficients for various crops have been considered as per table 27 of Technical Series-II, a publication of erstwhile Ministry of Irrigation.

#### 6.2.8.5 **Pre-sowing & Transplantation Water Demands**

Pre-sowing water demands for various crops has been considered as 65 mm.

#### 6.2.8.6 Effective Rainfall

Annual rainfall in the Raisen district is about 1226 mm and the same have been considered computation of effective rainfall for various crops. The effective rainfall component in the crop water requirement has been computed as per the Table 10 of Technical Series-II, a publication of erstwhile Ministry of Irrigation. The month wise normal rainfall in the command area is as under:

| Month    | Jan   | Feb   | Ma   | Apr  | May  | Jun    |
|----------|-------|-------|------|------|------|--------|
| Average  |       |       |      |      |      |        |
| Rainfall | 17.50 | 10.00 | 6.30 | 0.00 | 6.70 | 131.40 |

| Month    | Jul    | Aug    | Sep    | Oct   | Nov   | Dec   | Total   |
|----------|--------|--------|--------|-------|-------|-------|---------|
| Average  |        |        |        |       |       |       |         |
| Rainfall | 388.80 | 406.90 | 206.30 | 31.50 | 12.70 | 8.400 | 1226.50 |

#### 6.2.8.7 Irrigation Efficiency

Not all the applied irrigation water is utilized by the plants and some part of irrigation water is lost due to percolation in field during irrigation. Therefore, the water application efficiency has been considered as 65% for conventional surface irrigation methods followed for all crops. The loss of water in conveyance system i.e. canal, branch canal, distributaries etc. is considered in the conveyance efficiency, adopted as 75% for proposed lined canal system in the project.

#### 6.2.8.8 Irrigation Demand for Neemkheda barrage command

Crop water requirement computations for crops has been computed as by modified penman method and details are given in Annexure 6.2.4 of Volume – II. Month wise irrigation water demands for Neemkheda barrage command are given in Table-6.24.

#### Table-6.24

Month wise irrigation water demands for Neemkheda barrage

| Month                          | Jun | July | Aug | Sep | Oct | Nov   | Dec  | Jan   | Feb   | Mar   | Apr | May | Total  |
|--------------------------------|-----|------|-----|-----|-----|-------|------|-------|-------|-------|-----|-----|--------|
| Irrigation<br>Demand<br>in MCM | 0   | 0    | 0   | 0   | 0   | 6.468 | 3.56 | 3.267 | 2.716 | 0.598 | 0   | 0   | 16.609 |

#### 6.2.8.9 Environmental flow at Neemkheda barrage

The environmental flows have been considered as computed by NIH, Roorkee based on estimated monthly flow pattern in the sub-basin. For the monsoon months from June to October, 75% dependable flows have been computed on monthly basis and 20% of the 75% dependable flows in each monsoon month have been reserved for environmental and ecological purposes. However, for the non-monsoon months, average monthly flows have been worked out and 15% of the average monthly flows in different non-monsoon months have been reserved for environmental and ecological purposes. About 37.277 MCM of water is assessed for environmental and ecological purposes. Details of environmental flow of Neemkheda barrage is given in Table-6.25.

| Month | Water Demand for Environmental      |
|-------|-------------------------------------|
|       | Releases at Neemkheda barrage (MCM) |
| Jun   | 0                                   |
| Jul   | 5.723                               |
| Aug   | 19.477                              |
| Sep   | 7.936                               |
| Oct   | 0.475                               |
| Nov   | 1.37                                |
| Dec   | 1.026                               |
| Jan   | 0.426                               |
| Feb   | 0.621                               |
| Mar   | 0.22                                |
| Apr   | 0.003                               |
| May   | 0                                   |
| Total | 37.277                              |

Table - 6.25Environmental flow at Neemkheda barrage

#### 6.2.8.10 Simulation / Working Tables

The net yield series for Neemkheda barrage site have been developed by NIH, Roorkee from Year 1901-02 to 2008-09. For assessing the success of the barrage in meeting the projected water demands, the working tables for period of 50 years are considered sufficient. Working tables for Neemkheda barrage have been prepared for 55 years (1954-55 to 2008-09) and the success rate of the barrage in meeting the irrigation demands is 92.7%. The results of simulations / working tables are tabulated in Table-6.26.

#### Table-6.26

| S.<br>No. | Y    | ear |              | Inflow  | Irrigation<br>Demand<br>Met | S/F* | Environme<br>ntal<br>Releases | S/F* | Evaporation |
|-----------|------|-----|--------------|---------|-----------------------------|------|-------------------------------|------|-------------|
| 1         | 1954 | -   | 55           | 619.31  | 16.609                      | S    | 37.277                        | S    | 7.783       |
| 2         | 1955 | -   | 56           | 887.004 | 16.609                      | S    | 37.277                        | S    | 9.039       |
| 3         | 1956 | -   | 57           | 438.214 | 16.609                      | S    | 37.277                        | S    | 8.753       |
| 4         | 1957 | -   | 58           | 333.698 | 16.609                      | S    | 37.277                        | S    | 7.608       |
| 5         | 1958 | -   | 59           | 439.104 | 16.609                      | S    | 37.277                        | S    | 8.171       |
| 6         | 1959 | -   | 60           | 662.964 | 16.609                      | S    | 37.277                        | S    | 8.981       |
| 7         | 1960 | -   | 61           | 379.79  | 16.609                      | S    | 37.277                        | S    | 8.38        |
| 8         | 1961 | -   | 62           | 946.475 | 16.609                      | S    | 37.277                        | S    | 8.87        |
| 9         | 1962 | -   | - 63 465.804 |         | 16.609                      | S    | 37.277                        | S    | 8.795       |
| 10        | 1963 | -   | 64           | 522.629 | 16.609                      | S    | 37.277                        | S    | 8.962       |
| 11        | 1964 | -   | 65           | 534.247 | 16.609                      | S    | 37.277                        | S    | 9.142       |
| 12        | 1965 | -   | 66           | 288.348 | 16.609                      | S    | 29.002                        | F    | 5.949       |
| 13        | 1966 | -   | 67           | 273.454 | 16.609                      | S    | 37.277                        | S    | 4.747       |
| 14        | 1967 | -   | 68           | 404.537 | 16.609                      | S    | 37.277                        | S    | 7.168       |
| 15        | 1968 | -   | 69           | 440.1   | 16.609                      | S    | 37.277                        | S    | 8.418       |
| 16        | 1969 | -   | 70           | 715.12  | 16.609                      | S    | 37.277                        | S    | 8.978       |
| 17        | 1970 | -   | 71           | 845.854 | 16.609                      | S    | 37.277                        | S    | 9.326       |
| 18        | 1971 | -   | 72           | 397.512 | 16.609                      | S    | 37.277                        | S    | 8.675       |
| 19        | 1972 | -   | 73           | 372.475 | 16.609                      | S    | 36.859                        | F    | 6.467       |
| 20        | 1973 | -   | 74           | 945.794 | 16.609                      | S    | 37.277                        | S    | 8.47        |
| 21        | 1974 | -   | 75           | 563.989 | 16.609                      | S    | 37.277                        | S    | 9.101       |
| 22        | 1975 | -   | 76           | 612.212 | 16.609                      | S    | 37.277                        | S    | 9.145       |
| 23        | 1976 | -   | 77           | 460.036 | 16.609                      | S    | 37.277                        | S    | 8.765       |
| 24        | 1977 | -   | 78           | 629.448 | 16.609                      | S    | 37.277                        | S    | 9.164       |
| 25        | 1978 | -   | 79           | 584.315 | 16.609                      | S    | 37.277                        | S    | 9.207       |
| 26        | 1979 | -   | 80           | 53.551  | 1.581                       | F    | 33.611                        | F    | 2.216       |
| 27        | 1980 | -   | 81           | 353.644 | 16.609                      | S    | 37.277                        | S    | 4.995       |
| 28        | 1981 | -   | 82           | 300.142 | 16.609                      | S    | 37.277                        | S    | 5.203       |
| 29        | 1982 | -   | 83           | 534.534 | 16.609                      | S    | 37.277                        | S    | 7.532       |
| 30        | 1983 | -   | 84           | 912.029 | 16.609                      | S    | 37.277                        | S    | 8.851       |
| 31        | 1984 | -   | 85           | 562.091 | 16.609                      | S    | 37.174                        | F    | 3.8         |
| 32        | 1985 | -   | 86           | 615.471 | 16.609                      | S    | 37.277                        | S    | 7.823       |
| 33        | 1986 | -   | 87           | 721.603 | 16.609                      | S    | 37.277                        | S    | 9.163       |
| 34        | 1987 | -   | 88           | 352.898 | 16.609                      | S    | 37.277                        | S    | 6.928       |
| 35        | 1988 | -   | 89           | 300.766 | 16.609                      | S    | 37.277                        | S    | 5.532       |
| 36        | 1989 | -   | 90           | 346.074 | 16.609                      | S    | 31.554                        | F    | 4.814       |
| 37        | 1990 | -   | 91           | 543.205 | 16.609                      | S    | 37.277                        | S    | 8.187       |
| 38        | 1991 | -   | 92           | 355.885 | 14.717                      | F    | 35.938                        | F    | 2.593       |
| 39        | 1992 | -   | 93           | 391.372 | 16.609                      | S    | 37.277                        | S    | 6.287       |
| 40        | 1993 | -   | 94           | 522.841 | 16.609                      | S    | 37.277                        | S    | 8.001       |
| 41        | 1994 | -   | 95           | 589.247 | 16.609                      | S    | 37.277                        | S    | 8.872       |
| 42        | 1995 | -   | 96           | 328.607 | 16.609                      | S    | 37.277                        | S    | 6.28        |

#### Simulations / working tables of Neemkheda barrage

| S.<br>No. | Y    | Year |    | Year           |        | Inflow | Irrigation<br>Demand<br>Met | S/F* | Environme<br>ntal<br>Releases | S/F* | Evaporation |
|-----------|------|------|----|----------------|--------|--------|-----------------------------|------|-------------------------------|------|-------------|
| 43        | 1996 | -    | 97 | 624.862 16.609 |        | S      | 37.277                      | S    | 7.933                         |      |             |
| 44        | 1997 | -    | 98 | 414.871 16.609 |        | S      | 37.277                      | S    | 7.977                         |      |             |
| 45        | 1998 |      |    | 502.435        | 16.609 | S      | 37.277                      | S    | 7.951                         |      |             |
| 46        | 1999 | -    | 00 | 883.146        | 16.609 | S      | 37.277                      | S    | 8.908                         |      |             |
| 47        | 2000 | -    | 01 | 252.974        | 16.076 | F      | 36.727                      | F    | 4.272                         |      |             |
| 48        | 2001 | -    | 02 | 270.261        | 16.609 | S      | 37.277                      | S    | 3.938                         |      |             |
| 49        | 2002 | -    | 03 | 466.399        | 16.609 | S      | 31.554                      | F    | 6.458                         |      |             |
| 50        | 2003 | -    | 04 | 481.277        | 16.609 | S      | 37.277                      | S    | 7.989                         |      |             |
| 51        | 2004 | -    | 05 | 418.204        | 16.609 | S      | 37.277                      | S    | 7.763                         |      |             |
| 52        | 2005 | -    | 06 | 439.378        | 16.609 | S      | 29.51                       | F    | 7.28                          |      |             |
| 53        | 2006 | -    | 07 | 937.227        | 16.609 | S      | 37.277                      | S    | 8.616                         |      |             |
| 54        | 2007 | -    | 08 | 245.316        | 16.609 | S      | 37.274                      | F    | 4.785                         |      |             |
| 55        | 2008 | -    | 09 | 216.489        | 14.849 | F      | 36.433                      | F    | 3.397                         |      |             |

\* S: Success F: Failure

#### 6.2.9 Barari barrage

#### 6.2.9.1 Proposed cropping pattern

The proposed cropping pattern for providing irrigation in the command under Barari barrage as detailed in Table-6.27.

#### Table - 6.27

Proposed cropping pattern in the command of Barari barrage

| S.<br>No. | Name of the Crop | Area (ha) | Crop Period                                   |
|-----------|------------------|-----------|-----------------------------------------------|
|           | Rabi             |           |                                               |
| 1         | Ord. Wheat       | 890       | 1 <sup>st</sup> Nov to 15 <sup>th</sup> March |
| 2         | HYV Wheat        | 3110      | 1 <sup>st</sup> Nov to 15 <sup>th</sup> March |
| 3         | Gram             | 444       | 1 <sup>st</sup> Nov to 1 <sup>st</sup> March  |
|           | Total            | 4444      |                                               |

#### 6.2.9.2 Crop Water Requirement

The crop water requirements for the Barari barrage command (CCA 4444 ha) has been computed by Modified Penman Method as per the methodology given in the Technical Series-II, a publication of the erstwhile Ministry of Irrigation. The irrigation demand for Barari barrage command works out as 24.531 MCM.

#### 6.2.9.3 Reference Potential Evapo-transpiration (ETo)

A copy of the Scientific Report No. 136 (February 1971) has been obtained from IMD regarding Potential Evapo-transpiration over India. The Reference Evapo-transpiration (ETo) values in mm for Bhopal IMD station (near to Vidisha district) of Madhya Pradesh is tabulated in Table-6.28 and have been considered in the crop water requirement computation.

#### **Table - 6.28**

#### **Evapo-transpiration (ETo) values for Bhopal IMD station**

| Month  | Jan  | Feb  | Mar | Apr | May | Jun | Jul   | Aug   | Sep   | Oct   | Nov  | Dec  | Total  |
|--------|------|------|-----|-----|-----|-----|-------|-------|-------|-------|------|------|--------|
| ETo in |      |      |     |     |     |     |       |       |       |       |      |      |        |
| mm     | 79.6 | 99.4 | 149 | 183 | 236 | 191 | 118.4 | 104.9 | 115.3 | 119.6 | 85.5 | 70.5 | 1553.5 |

#### 6.2.9.4 Crop Coefficients

Crop coefficients for various crops have been considered as per table 27 of Technical Series-II, a publication of erstwhile Ministry of Irrigation.

#### 6.2.9.5 **Pre-sowing & Transplantation Water Demands**

Pre-sowing water demands for various crops has been considered as 65 mm.

#### 6.2.9.6 Effective Rainfall

Annual rainfall in the Raisen district which is near to Vidisha district is about 1226 mm and the same have been considered computation of effective rainfall for various crops. The crops are proposed to be irrigated in Rabi season and contribution of rainfall in meeting water demands is negligible. The effective rainfall component in the crop water requirement has been computed as per the Table 10 of Technical Series-II, A publication of erstwhile Ministry of Irrigation. The month wise normal rainfall in the command area is as under:

|   | Month    | Ja                   | n    | F  | 'eb   | Ι   | Ma   | I     | Apr | May     |   | Jun    |
|---|----------|----------------------|------|----|-------|-----|------|-------|-----|---------|---|--------|
|   | Average  |                      |      |    |       |     |      |       |     |         |   |        |
| ] | Rainfall | 17.50                | 10.0 |    | 0     | 6.3 | 0    | 0.00  |     | 6.70    | 1 | 131.40 |
|   |          |                      |      |    |       |     |      |       |     |         |   |        |
| Γ | Month    | Jul                  | A    | ug | Sej   | )   | Oct  |       | Nov | Dec     |   | Total  |
| А | verage   |                      |      |    |       |     |      |       |     |         |   |        |
| R | Rainfall | 388.80 406.90 206.30 |      | 0  | 31.50 |     | 2.70 | 8.400 |     | 1226.50 |   |        |

#### 6.2.9.7 Irrigation Efficiency

Not all the applied irrigation water is utilized by the plants and some part of irrigation water is lost due to percolation in field during irrigation. Therefore, the water application efficiency has been considered as 65% for conventional surface irrigation methods followed for all crops. The loss of water in conveyance system i.e. canal, branch canal, distributaries etc. is considered in the conveyance efficiency, adopted as 75% for proposed lined canal system in the project.

#### 6.2.9.8 Irrigation Demand for Barari barrage command

Crop water requirement for crops has been computed as by Modified Penman method and details are given in Annexure 6.2.9.1 of Volume – II. Monthwise irrigation water demands for Barari barrage command are given in Table-6.29.

#### Table - 6.29

#### Month wise irrigation water demands for Barari barrage

| Month                          | Jun | July | Aug | Sep | Oct | Nov   | Dec   | Jan   | Feb   | Mar   | Apr | May | Total  |
|--------------------------------|-----|------|-----|-----|-----|-------|-------|-------|-------|-------|-----|-----|--------|
| Irrigation<br>Demand<br>in MCM | 0   | 0    | 0   | 0   | 0   | 9.427 | 5.233 | 4.827 | 4.003 | 1.041 | 0   | 0   | 24.531 |

#### 6.2.9.9 Environmental flow at Barrari barrage

The environmental flows have been considered as computed by NIH, Roorkee based on estimated monthly flow pattern in the project subbasin. For the monsoon months from June to October, 75% dependable flows have been computed on monthly basis and 20% of the 75% dependable flows in each monsoon month have been reserved for environmental and ecological purposes. However, for the non-monsoon months, average monthly flows have been worked out and 15% of the average monthly flows in different non-monsoon months have been reserved for environmental and ecological purposes. About 132.526 MCM of water is assessed for environmental and ecological purposes as given in Table - 6.30.

|       | Water Demand for Environmental   |
|-------|----------------------------------|
| Month | Releases at Barari barrage (MCM) |
| Jun   | 0                                |
| Jul   | 25.323                           |
| Aug   | 69.292                           |
| Sep   | 27.259                           |
| Oct   | 2.843                            |
| Nov   | 2.819                            |
| Dec   | 2.298                            |
| Jan   | 1.097                            |
| Feb   | 1.176                            |
| Mar   | 0.399                            |
| Apr   | 0.02                             |
| May   | 0                                |
| Total | 132.526                          |

#### Table-6.30 Environmental flow at Barari barrage

#### 6.2.9.10 Simulation / Working Tables

The net yield series for Barari barrage site have been developed by NIH, Roorkee from Year 1901-02 to 2008-09. For assessing the success of the barrage in meeting the projected water demands, the working tables for period of 50 years are considered sufficient. Working tables for Barari barrage have been prepared for 55 years (1954-55 to 2008-09) and the success rate of the barrage in meeting the irrigation demands is 98.2%. The results of simulations / working tables are tabulated in Table-6.31.

#### Table - 6.31

#### Simulations / working tables of Barari barrage

#### **Unit: MCM**

| S.N.     | Y            | ear | •        | Inflow               | Irrigation<br>Demand<br>Met | S/F*   | Environmental<br>Releases | Evaporation      | Spills                      |
|----------|--------------|-----|----------|----------------------|-----------------------------|--------|---------------------------|------------------|-----------------------------|
| 1        | 1954         | -   | 55       | 1916.063             | 24.531                      | S      | 132.526                   | 9.777            | 1738.448                    |
| 2        | 1955         | -   | 56       | 2708.33              | 24.531                      | S      | 132.526                   | 11.218           | 2540.48                     |
| 3        | 1956         | -   | 57       | 1669.176             | 24.531                      | S      | 132.526                   | 11.756           | 1500.888                    |
| 4        | 1957         | -   | 58       | 859.665              | 24.531                      | S      | 132.526                   | 9.38             | 698.467                     |
| 5        | 1958         | -   | 59       | 1573.401             | 24.531                      | S      | 132.526                   | 10.456           | 1400.41                     |
| 6        | 1959         | -   | 60       | 2097.809             | 24.531                      | S      | 132.526                   | 11.698           | 1928.872                    |
| 7        | 1960         | -   | 61       | 1273.82              | 24.531                      | S      | 132.526                   | 11.756           | 1105.428                    |
| 8        | 1961         | -   | 62       | 3163.39              | 24.531                      | S      | 132.526                   | 11.66            | 2993.875                    |
| 9        | 1962         | -   | 63       | 1339.69              | 24.531                      | S      | 132.526                   | 11.732           | 1171.699                    |
| 10       | 1963         | -   | 64       | 1421.826             | 24.531                      | S      | 132.526                   | 11.634           | 1253.135                    |
| 11       | 1964         | -   | 65       | 1955.64              | 24.531                      | S      | 132.526                   | 11.756           | 1786.827                    |
| 12       | 1965         | -   | 66       | 1087.662             | 24.531                      | S      | 132.526                   | 11.26            | 922.429                     |
| 13       | 1966         | -   | 67       | 696.693              | 24.531                      | S      | 132.526                   | 7.023            | 537.97                      |
| 14       | 1967         | -   | 68       | 1486.956             | 24.531                      | S      | 132.526                   | 10.127           | 1311.331                    |
| 15       | 1968         | -   | 69       | 1279.443             | 24.531                      | S      | 132.526                   | 11.635           | 1110.758                    |
| 16       | 1969         | -   | 70       | 2595.067             | 24.531                      | S      | 132.526                   | 11.646           | 2426.208                    |
| 17       | 1970         | -   | 71       | 2708.63              | 24.531                      | S      | 132.526                   | 11.77            | 2539.337                    |
| 18       | 1971         | -   | 72       | 1419.158             | 24.531                      | S      | 132.526                   | 11.765           | 1250.872                    |
| 19       | 1972         | -   | 73       | 1189.772             | 24.531                      | S      | 127.662                   | 10.967           | 1029.703                    |
| 20       | 1973         | -   | 74       | 3106.778             | 24.531                      | S      | 132.526                   | 11.083           | 2935.401                    |
| 21       | 1974         | -   | 75       | 1605.202             | 24.531                      | S      | 132.526                   | 11.732           | 1437.218                    |
| 22       | 1975         | -   | 76       | 1809.058             | 24.531                      | S      | 132.526                   | 11.756           | 1639.994                    |
| 23       | 1976         | -   | 77       | 1182.374             | 24.531                      | S      | 132.526                   | 11.695           | 1015.139                    |
| 24       | 1977         | -   | 78       | 2259.404             | 24.531                      | S      | 132.526                   | 11.611           | 2088.99                     |
| 25       | 1978         | -   | 79       | 1601.557             | 24.531                      | S      | 132.526                   | 11.751           | 1433.229                    |
| 26       | 1979         | -   | 80       | 182.239              | 5.816                       | F      | 117.497                   | 2.715            | 67.332                      |
| 27       | 1980         | -   | 81       | 1115.289             | 24.531                      | S      | 132.526                   | 9.799            | 940.884                     |
| 28       | 1981         | -   | 82       | 902.798              | 24.531                      | S<br>S | 132.526                   | 10.218           | 737.212                     |
| 29       | 1982         | -   | 83       | 1717.217             | 24.531                      |        | 132.526                   | 10.897           | 1545.489                    |
| 30<br>31 | 1983         | -   | 84<br>85 | 2711.734             | 24.531                      | S<br>S | 132.526                   | 11.612           | 2542.266                    |
| 32       | 1984<br>1985 | -   | 85<br>86 | 1489.144<br>2053.431 | 24.531<br>24.531            | S<br>S | 128.397<br>132.526        | 11.104<br>11.371 | <u>1327.654</u><br>1883.373 |
| 33       | 1985         | -   | 87       | 1854.791             | 24.531                      | S      | 132.526                   | 11.751           | 1686.33                     |
| 33       |              | -   |          |                      |                             | S      |                           |                  |                             |
| <u> </u> | 1987<br>1988 | -   | 88<br>89 | 1210<br>976.879      | 24.531<br>24.531            | S      | 132.526<br>132.526        | 11.646<br>11.673 | <u>1041.297</u><br>809.791  |
| 36       | 1988         | -   | 89<br>90 | 976.879              | 24.531                      | S<br>S | 132.326                   | 8.512            | 768.378                     |
| 37       | 1989         | -   | 90<br>91 | 923.042<br>1753.578  | 24.531                      | S      | 132.526                   | 10.91            | 1580.185                    |
| 38       | 1990         | -   | 91<br>92 | 1195.695             | 24.531                      | S      | 132.526                   | 11.637           | 1028.4                      |
| <u> </u> | 1991         | -   | 92<br>93 | 1363.521             | 24.531                      | S      | 132.526                   | 11.346           | 1193.896                    |
| 40       | 1992         | -   | 93<br>94 | 1928.184             | 24.531                      | S      | 132.526                   | 11.733           | 1758.867                    |
| 40       | 1993         | -   | 94<br>95 | 2012.907             | 24.531                      | S      | 132.526                   | 11.748           | 1844.452                    |
| 41       | 1994         | -   | 95<br>96 | 1148.126             | 24.531                      | S      | 132.526                   | 11.646           | 979.423                     |
| 42       | 1995         | -   | 90<br>97 | 2408.156             | 24.531                      | S      | 132.526                   | 11.646           | 2239.079                    |
| 43       | 1990         | -   | 97<br>98 | 1549.974             | 24.531                      | S      | 132.526                   | 11.684           | 1381.603                    |

| S.N. | Y                 | eai               | r       | Inflow   | Irrigation<br>Demand<br>Met | S/F*    | Environmental<br>Releases | Evaporation | Spills   |
|------|-------------------|-------------------|---------|----------|-----------------------------|---------|---------------------------|-------------|----------|
| 45   | 1998              | 998 - 99 1569.303 |         | 24.531   | S                           | 132.526 | 11.756                    | 1400.494    |          |
| 46   | 1999              | -                 | 00      | 3152.452 | 24.531                      | S       | 132.526                   | 11.77       | 2982.846 |
| 47   | 2000              | -                 | 01      | 930.527  | 24.531                      | S       | 132.526                   | 10.095      | 768.147  |
| 48   | 2001              | -                 | 02      | 859.595  | 24.531                      | S       | 132.526                   | 8.975       | 694.478  |
| 49   | 2002              | -                 | 03      | 1203.299 | 24.531                      | S       | 112.233                   | 9.561       | 1055.4   |
| 50   | 2003              | -                 | 04      | 1337.042 | 24.531                      | S       | 132.526                   | 11.034      | 1165.844 |
| 51   | 2004              | -                 | 05      | 1112.069 | 24.531                      | S       | 132.526                   | 11.64       | 945.618  |
| 52   | 2005              | -                 | 06      | 1356.678 | 24.531                      | S       | 132.526                   | 11.339      | 1186.036 |
| 53   | 2006              | -                 | 07      | 2543.45  | 24.531                      | S       | 132.526                   | 11.66       | 2374.285 |
| 54   | 2007              | -                 | 08      | 746.277  | 24.531                      | S       | 132.526                   | 8.638       | 587.428  |
| 55   | 2008 - 09 628.044 |                   | 628.044 | 24.531   | S                           | 132.526 | 6.812                     | 466.309     |          |

\* S: Success F: Failure

#### 6.2.10 Kesari Barrage

#### 6.2.10.1 Simulation / Working Tables

The proposed cropping pattern for providing irrigation in the command under Kesari barrage is given in Table-6.32.

#### Table - 6.32

Proposed cropping pattern in the command of Kesari barrage

| S.<br>No. | Name of the Crop | Area (ha) | Crop Period                                   |
|-----------|------------------|-----------|-----------------------------------------------|
| 1         | Kharif           |           |                                               |
| 2         | Soyabean         | 592       | 1 <sup>st</sup> Jun to 30 <sup>th</sup> Sep   |
| 3         | Rabi             |           |                                               |
| 4         | Ord. Wheat       | 295       | 1 <sup>st</sup> Nov to 15 <sup>th</sup> March |
| 5         | HYV Wheat        | 1035      | 1 <sup>st</sup> Nov to 15 <sup>th</sup> March |
| 6         | Gram             | 148       | 1 <sup>st</sup> Nov to 1 <sup>st</sup> March  |
|           | Total            | 2070      |                                               |

#### 6.2.10.2 Crop Water Requirement

The crop water requirements for the Kesari barrage command (CCA 1478 ha) has been computed by Modified Penman Method as per the methodology given in the Technical Series-II, a publication of the erstwhile Ministry of Irrigation. The irrigation demand for Kesari Barrage command works out as 10.028 MCM.

#### 6.2.10.3 Reference Potential Evapo-transpiration (ETo)

A copy of the Scientific Report No. 136 (February 1971) has been obtained from IMD regarding Potential Evapo-transpiration over India. The Reference Evapo-transpiration (ETo) values in mm for Bhopal IMD station (near to Vidisha district) of Madhya Pradesh is tabulated in Table-6.33 and have been considered in the crop water requirement computation.

#### Table - 6.33

#### **Evapo-transpiration (ETo) values for Bhopal IMD station**

| Month  | Jan  | Feb  | Mar | Apr | May | Jun | Jul   | Aug   | Sep   | Oct   | Nov  | Dec  | Total  |
|--------|------|------|-----|-----|-----|-----|-------|-------|-------|-------|------|------|--------|
| ETo in |      |      |     |     |     |     |       |       |       |       |      |      |        |
| mm     | 79.6 | 99.4 | 149 | 183 | 236 | 191 | 118.4 | 104.9 | 115.3 | 119.6 | 85.5 | 70.5 | 1553.5 |

#### 6.2.10.4 Crop Coefficients

Crop coefficients for various crops have been considered as per table 27 of Technical Series-II, a publication of erstwhile Ministry of Irrigation.

#### 6.2.10.5 **Pre-sowing & Transplantation Water Demands**

Pre-sowing water demands for various crops has been considered as 65 mm.

#### 6.2.10.6 Effective Rainfall

Annual rainfall in the Raisen district which is near to Vidisha district is about 1226 mm and the same have been considered computation of effective rainfall for various crops. The crops are proposed to be irrigated in Rabi season and contribution of rainfall in meeting water demands is negligible. The effective rainfall component in the crop water requirement has been computed as per the Table 10 of Technical Series-II, a publication of erstwhile Ministry of Irrigation. The month wise normal rainfall in the command area is as under:

| Month               | Jan   | Feb   | Ma   | Apr  | May  | Jun    |
|---------------------|-------|-------|------|------|------|--------|
| Average<br>Rainfall | 17.50 | 10.00 | 6.30 | 0.00 | 6.70 | 131.40 |

| Month               | Jul    | Aug    | Sep    | Oct   | Nov   | Dec   | Total   |  |
|---------------------|--------|--------|--------|-------|-------|-------|---------|--|
| Average<br>Rainfall | 388.80 | 406.90 | 206.30 | 31.50 | 12.70 | 8.400 | 1226.50 |  |

#### 6.2.10.7 Irrigation Efficiency

Not all the applied irrigation water is utilized by the plants and some part of irrigation water is lost due to percolation in field during irrigation. Therefore, the water application efficiency has been considered as 65% for conventional surface irrigation methods followed for all crops. The loss of water in conveyance system i.e. canal, branch canal, distributaries etc. is considered in the conveyance efficiency, adopted as 75% for proposed lined canal system in the project.

#### 6.2.10.8 Irrigation Demand for Kesari barrage command

Crop water requirement for crops has been computed as by modified penman method and details are given in **Annexure 6.2.4**. Monthwise irrigation water demands for Kesari barrage command are given in Table-6.34.

#### Table-6.34

#### Month wise irrigation water demands for Kesari barrage

| Month                | Jun   | July  | Aug   | Sep   | Oct | Nov   | Dec   | Jan   | Feb   | Mar   | Apr | May | Total |
|----------------------|-------|-------|-------|-------|-----|-------|-------|-------|-------|-------|-----|-----|-------|
| Irrigation<br>Demand | 1.133 | 0.275 | 0.245 | 0.222 | 0   | 3.133 | 1.739 | 1.603 | 1.332 | 0.346 | 0   | 0   | 10.02 |
| in MCM               |       |       |       |       |     |       |       |       |       |       |     | -   | 8     |

#### 6.2.10.9 Environmental flow at Kesari Barrage

The environmental flows have been considered as computed by NIH, Roorkee based on estimated monthly flow pattern in the sub-basin. For the monsoon months from June to October, 75% dependable flows have been computed on monthly basis and 20% of the 75% dependable flows in each monsoon month have been reserved for environmental and ecological purposes. However, for the non-monsoon months, average monthly flows have been worked out and 15% of the average monthly flows in different non-monsoon months have been reserved for environmental and ecological purposes. About 15.747 MCM of water is assessed for environmental and ecological and ecological purposes as given in Table – 6.35.

|       | Water Demand for Environmental    |
|-------|-----------------------------------|
| Month | Releases at Kesari barrage ( MCM) |
| Jun   | 0                                 |
| Jul   | 2.995                             |
| Aug   | 8.342                             |
| Sep   | 2.899                             |
| Oct   | 0.304                             |
| Nov   | 0.401                             |
| Dec   | 0.326                             |
| Jan   | 0.156                             |
| Feb   | 0.218                             |
| Mar   | 0.092                             |
| Apr   | 0.012                             |
| May   | 0.002                             |
| Total | 15.747                            |

Table - 6.35Environmental flow at Kesari barrage

#### 6.2.10.10 Simulation / Working Tables

The net yield series for Kesari barrage site have been developed by NIH, Roorkee from Year 1901-02 to 2008-09. For assessing the success of the barrage in meeting the projected water demands, the working tables for period of 50 years are considered sufficient. Working tables for Kesari barrage have been prepared for 55 years (1954-55 to 2008-09) and the success rate of the barrage in meeting the irrigation demands is 94.50 %. The results of simulations / working tables are tabulated in Table-6.36.

#### Table-6.36

| S.N. | Ŋ    | Zea | r  | Inflow   | Irrigation    | S/F* | Environmental | Evaporation     | Spills  |
|------|------|-----|----|----------|---------------|------|---------------|-----------------|---------|
|      |      |     | -  |          | Demand<br>Met | 0,1  | Releases      | 2 · up of union | Spins   |
| 1    | 1954 | -   | 55 | 181.137  | 8.895         | F    | 15.747        | 4.721           | 146.22  |
| 2    | 1955 | -   | 56 | 273.598  | 10.028        | S    | 15.747        | 6.411           | 239.099 |
| 3    | 1956 | -   | 57 | 334.455  | 10.028        | S    | 15.747        | 6.704           | 301.563 |
| 4    | 1957 | -   | 58 | 104.158  | 10.028        | S    | 15.747        | 4.715           | 79.13   |
| 5    | 1958 | -   | 59 | 185.211  | 10.028        | S    | 15.747        | 5.161           | 151.375 |
| 6    | 1959 | -   | 60 | 260.506  | 10.028        | Š    | 15.747        | 6.415           | 226.282 |
| 7    | 1960 | -   | 61 | 142.244  | 10.028        | S    | 15.747        | 5.137           | 114.84  |
| 8    | 1961 | -   | 62 | 326.749  | 10.028        | S    | 15.747        | 6.348           | 290.61  |
| 9    | 1962 | -   | 63 | 154.369  | 10.028        | S    | 15.747        | 5.288           | 126.944 |
| 10   | 1963 | -   | 64 | 152.295  | 10.028        | S    | 15.747        | 4.802           | 121.807 |
| 11   | 1964 | -   | 65 | 190.169  | 10.028        | S    | 15.747        | 5.468           | 157.528 |
| 12   | 1965 | -   | 66 | 122.119  | 10.028        | S    | 15.747        | 4.687           | 94.149  |
| 13   | 1966 | -   | 67 | 73.682   | 10.028        | S    | 15.747        | 3.014           | 47.999  |
| 14   | 1967 | -   | 68 | 176.627  | 10.028        | S    | 15.747        | 4.848           | 140.875 |
| 15   | 1968 | -   | 69 | 110.332  | 10.028        | S    | 15.747        | 4.508           | 82.432  |
| 16   | 1969 | -   | 70 | 293.485  | 10.028        | S    | 15.747        | 6.205           | 256.453 |
| 17   | 1970 | -   | 71 | 272.399  | 10.028        | S    | 15.747        | 6.746           | 240.071 |
| 18   | 1971 | -   | 72 | 243.901  | 10.028        | S    | 15.747        | 6.595           | 212.023 |
| 19   | 1972 | -   | 73 | 110.719  | 10.028        | S    | 15.747        | 4.37            | 85.449  |
| 20   | 1973 | -   | 74 | 271.331  | 10.028        | S    | 15.747        | 6.062           | 234.184 |
| 21   | 1974 | -   | 75 | 175.879  | 10.028        | S    | 15.747        | 5.269           | 147.415 |
| 22   | 1975 | -   | 76 | 220.296  | 10.028        | S    | 15.747        | 6.174           | 186.733 |
| 23   | 1976 | -   | 77 | 86.649   | 10.028        | S    | 15.747        | 4.268           | 61.301  |
| 24   | 1977 | -   | 78 | 276.81   | 10.028        | S    | 15.747        | 6.399           | 238.857 |
| 25   | 1978 | -   | 79 | 196.622  | 10.028        | S    | 15.747        | 6.007           | 166.705 |
| 26   | 1979 | -   | 80 | 30.045   | 9.95          | F    | 15.641        | 2.744           | 7.899   |
| 27   | 1980 | -   | 81 | 123.939  | 10.028        | S    | 15.747        | 4.239           | 90.477  |
| 28   | 1981 | -   | 82 | 99.863   | 10.028        | S    | 15.747        | 3.935           | 70.888  |
| 29   | 1982 | -   | 83 | 284.534  | 10.028        | S    | 15.747        | 6.218           | 247.169 |
| 30   | 1983 | -   | 84 | 262.143  | 10.028        | S    | 15.747        | 6.5             | 230.201 |
| 31   | 1984 | -   | 85 | 114.514  | 10.028        | S    | 15.747        | 4.366           | 89.455  |
| 32   | 1985 | -   | 86 | 250.235  | 10.028        | S    | 15.747        | 5.963           | 213.633 |
| 33   | 1986 | -   | 87 | 120.6649 | 10.028        | S    | 15.747        | 3.386           | 98.5489 |
| 34   | 1987 | -   | 88 | 225.696  | 9.384         | F    | 15.747        | 5.429           | 188.638 |
| 35   | 1988 | _   | 89 | 110.025  | 10.028        | S    | 15.747        | 4.676           | 83.974  |
| 36   | 1989 | _   | 90 | 129.858  | 10.028        | S    | 15.747        | 4.448           | 98.527  |
| 37   | 1990 | -   | 91 | 139.671  | 10.028        | S    | 15.747        | 4.806           | 108.748 |
| 38   | 1991 | -   | 92 | 136.072  | 10.028        | S    | 15.747        | 4.562           | 106.332 |
| 39   | 1992 | -   | 93 | 148.009  | 10.028        | S    | 15.747        | 4.788           | 116.517 |
| 40   | 1993 | _   | 94 | 311.707  | 10.028        | S    | 15.747        | 6.385           | 275.76  |
| 41   | 1994 | -   | 95 | 232.636  | 10.028        | S    | 15.747        | 6.514           | 201.297 |
| 42   | 1995 | -   | 96 | 156.666  | 10.028        | S    | 15.747        | 5.196           | 128.286 |
| 43   | 1996 | -   | 97 | 244.376  | 10.028        | S    | 15.747        | 6.08            | 209.771 |
| 44   | 1997 | _   | 98 | 156.165  | 10.028        | S    | 15.747        | 5.229           | 127.884 |
| 45   | 1998 | -   | 99 | 119.653  | 10.028        | S    | 15.747        | 4.561           | 90.634  |

#### Simulations / working tables of Kesari barrage

| S.N. | J    | Year |    | Inflow  | Irrigation<br>Demand | S/F* | Environmental<br>Releases | Evaporation | Spills  |
|------|------|------|----|---------|----------------------|------|---------------------------|-------------|---------|
|      |      |      |    |         | Met                  |      |                           |             |         |
| 46   | 1999 | -    | 00 | 290.051 | 10.028               | S    | 15.747                    | 6.33        | 253.25  |
| 47   | 2000 | -    | 01 | 155.796 | 10.028               | S    | 15.747                    | 5.225       | 128.64  |
| 48   | 2001 | -    | 02 | 132.415 | 10.028               | S    | 15.747                    | 4.926       | 102.108 |
| 49   | 2002 | -    | 03 | 166.77  | 10.028               | S    | 14.869                    | 4.629       | 136.372 |
| 50   | 2003 | -    | 04 | 220.632 | 10.028               | S    | 15.747                    | 5.898       | 186.931 |
| 51   | 2004 | -    | 05 | 122.015 | 10.028               | S    | 15.747                    | 4.752       | 95.066  |
| 52   | 2005 | -    | 06 | 178.945 | 10.028               | S    | 15.747                    | 5.235       | 145.76  |
| 53   | 2006 | -    | 07 | 227.311 | 10.028               | S    | 15.747                    | 6.002       | 193.929 |
| 54   | 2007 | -    | 08 | 104.888 | 10.028               | S    | 15.747                    | 4.712       | 78.639  |
| 55   | 2008 | -    | 09 | 83.099  | 10.028               | S    | 15.747                    | 4.327       | 53.804  |

\* S: Success F: Failure

#### 6.2.11 Kotha barrage

#### 6.2.11.1 Proposed cropping pattern

The proposed cropping pattern for providing irrigation in the command under Kotha barrage is given in Table-6.37.

| -         | Troposed cropping pattern in the command of Rotha barrage |           |                                               |  |  |  |  |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------|-----------|-----------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| S.<br>No. | Name of the Crop                                          | Area (ha) | Crop Period                                   |  |  |  |  |  |  |  |  |  |  |
| 1         | Kharif                                                    |           |                                               |  |  |  |  |  |  |  |  |  |  |
| 2         | Soyabean                                                  | 4340      | 1 <sup>st</sup> Jun to 30 <sup>th</sup> Sep   |  |  |  |  |  |  |  |  |  |  |
| 3         | Rabi                                                      |           |                                               |  |  |  |  |  |  |  |  |  |  |
| 4         | Ord. Wheat                                                | 3476      | 1 <sup>st</sup> Nov to 15 <sup>th</sup> March |  |  |  |  |  |  |  |  |  |  |
| 5         | HYV Wheat                                                 | 8689      | 1 <sup>st</sup> Nov to 15 <sup>th</sup> March |  |  |  |  |  |  |  |  |  |  |
| 6         | Gram                                                      | 5192      | 1 <sup>st</sup> Nov to 1 <sup>st</sup> March  |  |  |  |  |  |  |  |  |  |  |
|           | Total                                                     | 21697     |                                               |  |  |  |  |  |  |  |  |  |  |

Table-6.37Proposed cropping pattern in the command of Kotha barrage

#### 6.2.11.2 Crop Water Requirement

The crop water requirements for the Kotha Barrage command (CCA 17357 ha) has been computed by Modified Penman Method as per the methodology given in the Technical Series-II, a publication of the erstwhile Ministry of Irrigation. The irrigation demand for Kotha barrage command works out as 107.772 MCM.

#### 6.2.11.3 Reference Potential Evapo-transpiration (ETo)

A copy of the Scientific Report No. 136 (February 1971) has been obtained from IMD regarding Potential Evapo-transpiration over India. The Reference Evapo-transpiration (ETo) values in mm for Bhopal IMD station (near to Vidisha district) of Madhya Pradesh is tabulated in Table-6.38 and have been considered in the crop water requirement computation:

#### Table - 6.38

#### **Evapo-transpiration (ETo) values for Bhopal IMD station**

| Month  | Jan  | Feb  | Mar | Apr | May | Jun | Jul   | Aug   | Sep   | Oct   | Nov  | Dec  | Total  |
|--------|------|------|-----|-----|-----|-----|-------|-------|-------|-------|------|------|--------|
| ETo in |      |      |     |     |     |     |       |       |       |       |      |      |        |
| mm     | 79.6 | 99.4 | 149 | 183 | 236 | 191 | 118.4 | 104.9 | 115.3 | 119.6 | 85.5 | 70.5 | 1553.5 |

#### 6.2.11.4 Crop Coefficients

Crop coefficients for various crops have been considered as per table 27 of Technical Series-II, a publication of erstwhile Ministry of Irrigation.

#### 6.2.11.5 **Pre-sowing & Transplantation Water Demands**

Pre-sowing water demands for various crops has been considered as 65 mm.

#### 6.2.11.6 Effective Rainfall

Annual rainfall in the Raisen district which is near to Vidisha district is about 1226 mm and the same have been considered computation of effective rainfall for various crops. The crops are proposed to be irrigated in Rabi season and contribution of rainfall in meeting water demands is negligible. The effective rainfall component in the crop water requirement has been computed as per the Table 10 of Technical Series-II, a publication of erstwhile Ministry of Irrigation. The month wise normal rainfall in the command area is as under:

| Month                         | Jan    | Feb    | Feb  |     | Ma A |   | or    | May   | Jun     |  |
|-------------------------------|--------|--------|------|-----|------|---|-------|-------|---------|--|
| Average<br>Rainfall           | 17.50  | ) 10   | 0.00 |     | .30  |   | 0.00  | 6.70  | 131.40  |  |
| Month Jul Aug Sep Oct Nov Dec |        |        |      |     |      |   |       | Total |         |  |
| Average<br>Rainfall           | 388.80 | 406.90 | 206. | .30 | 31.5 | 0 | 12.70 | 8.400 | 1226.50 |  |

#### 6.2.11.7 Irrigation Efficiency

Not all the applied irrigation water is utilized by the plants and some part of irrigation water is lost due to percolation in field during irrigation. Therefore, the water application efficiency has been considered as 65% for conventional surface irrigation methods followed for all crops. The loss of water in conveyance system i.e. canal, branch canal, distributaries etc. is considered in the conveyance efficiency, adopted as 75% for proposed lined canal system in the project.

#### 6.2.11.8 Irrigation Demand for Kotha barrage command

Crop water requirement for crops has been computed as by modified penman method and details are given in Annexure 6.2.4 of Volume – II. Month wise irrigation water demands for Kotha barrage command are given in Table-6.39.

#### Table-6.39

#### Month wise irrigation water demands for Kotha barrage

| Month                          | Jun   | July | Aug   | Sep   | Oct | Nov    | Dec    | Jan    | Feb    | Mar   | Apr | May | Total   |
|--------------------------------|-------|------|-------|-------|-----|--------|--------|--------|--------|-------|-----|-----|---------|
| Irrigation<br>Demand in<br>MCM | 8.298 | 2.02 | 1.798 | 1.632 | 0   | 36.616 | 20.156 | 18.498 | 15.366 | 3.388 | 0   | 0   | 107.772 |

#### 6.2.11.9 Environmental flow at Kotha barrage

The environmental flows have been considered as computed by NIH, Roorkee based on estimated monthly flow pattern in the sub-basin. For the monsoon months from June to October, 75% dependable flows have been computed on monthly basis and 20% of the 75% dependable flows in each monsoon month have been reserved for environmental and ecological purposes. However, for the non-monsoon months, average monthly flows

have been worked out and 15% of the average monthly flows in different non-monsoon months have been reserved for environmental and ecological purposes. About 198.154 MCM of water is assessed for environmental and ecological purposes as given in Table 6.40.

|       | Water Demand for Environmental  |
|-------|---------------------------------|
| Month | Releases at Kotha barrage (MCM) |
| Jun   | 0                               |
| Jul   | 35.553                          |
| Aug   | 113.126                         |
| Sep   | 43.325                          |
| Oct   | 3.003                           |
| Nov   | 1.231                           |
| Dec   | 0.991                           |
| Jan   | 0.319                           |
| Feb   | 0.396                           |
| Mar   | 0.195                           |
| Apr   | 0.013                           |
| May   | 0.002                           |
| Total | 198.154                         |

### Table - 6.40Environmental flow at Kotha barrage

#### 6.2.11.10 Simulation study / Working Tables

The net yield series for Kotha barrage site have been developed by NIH, Roorkee from Year 1901-02 to 2008-09. For assessing the success of the barrage in meeting the projected water demands, the working tables for period of 50 years are considered sufficient. Working tables for Kotha barrage have been prepared for 55 years (1954-55 to 2008-09) and the success rate of the barrage in meeting the irrigation demands is 85.5%. The results of simulations/working tables are tabulated in Table-6.41.

#### Table-6.41

| S.N. | Ŋ    | ea | r    | Inflow   | Irrigation | S/F* | Environmental | Evaporation | Spills   |
|------|------|----|------|----------|------------|------|---------------|-------------|----------|
|      |      |    |      |          | Demand     |      | Releases      |             |          |
|      | 1071 |    |      |          | Met        |      |               | 10.000      |          |
| 1    | 1954 | -  | 1955 | 2672.318 | 99.474     | F    | 198.154       | 19.889      | 2341.736 |
| 2    | 1955 | -  | 1956 | 4022.553 | 107.772    | S    | 198.154       | 25.193      | 3670.346 |
| 3    | 1956 | -  | 1957 | 3085.221 | 107.772    | S    | 198.154       | 25.219      | 2765.827 |
| 4    | 1957 | -  | 1958 | 1319.943 | 107.772    | S    | 198.154       | 21.208      | 1005.526 |
| 5    | 1958 | -  | 1959 | 2318.903 | 107.772    | S    | 198.154       | 20.704      | 1990.6   |
| 6    | 1959 | -  | 1960 | 3275.933 | 107.772    | S    | 198.154       | 24.221      | 2933.143 |
| 7    | 1960 | -  | 1961 | 1870.17  | 107.772    | S    | 198.154       | 21.526      | 1556.573 |
| 8    | 1961 | -  | 1962 | 4799.565 | 107.772    | S    | 198.154       | 32.204      | 4416.889 |
| 9    | 1962 | -  | 1963 | 2127.435 | 107.772    | S    | 198.154       | 24.084      | 1841.075 |
| 10   | 1963 | -  | 1964 | 2061.056 | 107.772    | S    | 198.154       | 10.036      | 1740.965 |
| 11   | 1964 | -  | 1965 | 2775.954 | 107.772    | S    | 198.154       | 21.854      | 2449.257 |
| 12   | 1965 | -  | 1966 | 1537.353 | 107.772    | S    | 198.154       | 20.74       | 1215.164 |
| 13   | 1966 | -  | 1967 | 933.269  | 107.772    | S    | 198.154       | 19.643      | 610.948  |
| 14   | 1967 | -  | 1968 | 2247.959 | 105.837    | F    | 198.154       | 20.385      | 1919.805 |
| 15   | 1968 | -  | 1969 | 1834.841 | 107.772    | S    | 198.154       | 20.514      | 1509.858 |
| 16   | 1969 | -  | 1970 | 4015.485 | 107.772    | S    | 198.154       | 26.543      | 3658.102 |
| 17   | 1970 | -  | 1971 | 4012.017 | 107.772    | S    | 198.154       | 29.279      | 3676.386 |
| 18   | 1971 | -  | 1972 | 2541.393 | 107.772    | S    | 198.154       | 24.607      | 2231.261 |
| 19   | 1972 | I  | 1973 | 1617.584 | 107.772    | S    | 197.593       | 18.094      | 1302.43  |
| 20   | 1973 | I  | 1974 | 4641.13  | 106.114    | F    | 198.154       | 30.919      | 4263.627 |
| 21   | 1974 | ١  | 1975 | 2419.285 | 107.772    | S    | 198.154       | 23.736      | 2127.872 |
| 22   | 1975 | ١  | 1976 | 3026.987 | 107.772    | S    | 198.154       | 23.277      | 2690.901 |
| 23   | 1976 | ١  | 1977 | 1503.048 | 107.772    | S    | 198.154       | 19.562      | 1187.417 |
| 24   | 1977 | ١  | 1978 | 3433.88  | 107.772    | S    | 198.154       | 25.045      | 3086.008 |
| 25   | 1978 | I  | 1979 | 2538.016 | 107.772    | S    | 198.154       | 22.792      | 2223.222 |
| 26   | 1979 | I  | 1980 | 296.207  | 106.29     | F    | 188.991       | 13.329      | 0        |
| 27   | 1980 | I  | 1981 | 1567.781 | 107.772    | S    | 198.154       | 18.087      | 1233.923 |
| 28   | 1981 | I  | 1982 | 1388.012 | 107.772    | S    | 198.154       | 19.584      | 1063.25  |
| 29   | 1982 | ١  | 1983 | 2875.284 | 107.772    | S    | 198.154       | 21.069      | 2539.784 |
| 30   | 1983 | ١  | 1984 | 4085.47  | 107.772    | S    | 198.154       | 28.306      | 3731.262 |
| 31   | 1984 | ١  | 1985 | 1887.318 | 107.772    | S    | 198.154       | 20.295      | 1592.401 |
| 32   | 1985 | -  | 1986 | 3212.065 | 105.961    | F    | 198.154       | 23.273      | 2869.828 |
| 33   | 1986 | -  | 1987 | 2443.596 | 107.772    | S    | 198.154       | 20.768      | 2132.211 |
| 34   | 1987 | -  | 1988 | 2224.567 | 106.418    | F    | 198.154       | 20.659      | 1893.346 |
| 35   | 1988 | -  | 1989 | 1482.365 | 107.772    | S    | 198.154       | 21.07       | 1159.231 |
| 36   | 1989 | -  | 1990 | 1409.362 | 107.772    | S    | 193.684       | 18.57       | 1089.416 |
| 37   | 1990 | -  | 1991 | 2303.948 | 107.772    | S    | 198.154       | 21.255      | 1976.931 |
| 38   | 1991 | -  | 1992 | 1664.304 | 107.772    | S    | 198.154       | 18.733      | 1346.782 |
| 39   | 1992 | -  | 1993 | 1877.227 | 102.362    | F    | 198.154       | 20.093      | 1549.173 |
| 40   | 1993 | -  | 1994 | 3309.725 | 107.772    | S    | 198.154       | 24.068      | 2966.912 |
| 41   | 1994 | -  | 1995 | 3066.685 | 107.772    | S    | 198.154       | 25.688      | 2739.906 |
| 42   | 1995 | -  | 1996 | 1910.921 | 107.772    | S    | 198.154       | 21.355      | 1591.725 |

#### Simulations / working tables of Kotha barrage

| S.N. | Year |   | r    | Inflow   | Irrigation    | S/F* | Environmental | Evaporation | Spills   |
|------|------|---|------|----------|---------------|------|---------------|-------------|----------|
|      |      |   |      |          | Demand<br>Mat |      | Releases      |             |          |
|      |      | - |      |          | Met           |      |               |             |          |
| 43   | 1996 | - | 1997 | 3602.69  | 107.772       | S    | 198.154       | 24.772      | 3256.049 |
| 44   | 1997 | - | 1998 | 2175.963 | 107.772       | S    | 198.154       | 21.871      | 1864.279 |
| 45   | 1998 | - | 1999 | 2084.035 | 107.772       | S    | 198.154       | 20.47       | 1758.667 |
| 46   | 1999 | I | 2000 | 4451.282 | 107.772       | S    | 198.154       | 30.592      | 4077.781 |
| 47   | 2000 | I | 2001 | 1637.073 | 107.772       | S    | 198.154       | 22.845      | 1345.913 |
| 48   | 2001 | - | 2002 | 1315.902 | 107.772       | S    | 198.154       | 20.964      | 987.648  |
| 49   | 2002 | I | 2003 | 1874.761 | 107.546       | F    | 162.601       | 18.776      | 1584.852 |
| 50   | 2003 | I | 2004 | 2267.229 | 107.772       | S    | 198.154       | 21.497      | 1937.04  |
| 51   | 2004 | - | 2005 | 1725.728 | 107.772       | S    | 198.154       | 20.888      | 1403.232 |
| 52   | 2005 | - | 2006 | 2071.339 | 107.772       | S    | 198.154       | 20.833      | 1743.005 |
| 53   | 2006 | I | 2007 | 3955.312 | 107.772       | S    | 198.154       | 26.586      | 3600.341 |
| 54   | 2007 | I | 2008 | 1181.899 | 107.772       | S    | 198.154       | 21.562      | 881.42   |
| 55   | 2008 | - | 2009 | 889.363  | 107.772       | S    | 198.154       | 21.037      | 560.047  |

\* S: Success F: Failure

#### 6.2.11.11 Command area planning on the basis of simulation studies

Command area of the 4 barrages has been planned on the basis of water availability for utilization computed by simulation study. The CCA, Annual Irrigation, water utilization details are furnished in Table-6.42.

Table - 6.42CCA, Annual Irrigation, Annual Utilisation under barrages

| S.  | Name of the | CCA   | Annual Irrigation | Water utilization |
|-----|-------------|-------|-------------------|-------------------|
| No. | barrages    | (ha)  | (ha)              | (MCM)             |
| 1   | Neemkheda   | 3066  | 3066              | 16.61             |
| 2   | Barari      | 4444  | 4444              | 24.53             |
| 3   | Kotha       | 17357 | 21696             | 107.77            |
| 4   | Kesari      | 1479  | 2070              | 10.03             |
|     | Total       | 26346 | 31276             | 158.94            |

#### 6.2.11.12 Designed head discharge of canal systems

The canal capacities at the canal head for the different canals have been computed assuming the 21 days canal running day in a month and furnished below in Table-6.43.

## Table - 6.43Carrying capacity at head

| Dam/    | Canal | CCA     | Annual     | Water       | Peak in     | Capacity*    |
|---------|-------|---------|------------|-------------|-------------|--------------|
| barrage |       | (ha)    | Irrigation | Utilisation | utilization | (Cumecs)     |
|         |       |         | (ha)       | (MCM)       | (MCM)       |              |
| Kesari  | Right | 1478.50 | 2069.90    | 10.028      | 3.133       | 1.90         |
| barrage | Bank  |         |            |             | (November)  | (1.72+0.18)  |
|         | Canal |         |            |             |             |              |
| Barari  | Right | 4444.45 | 4444.45    | 24.531      | 9.427       | 5.72         |
| barrage | Bank  |         |            |             | (November)  | (5.20+0.52)  |
|         | Canal |         |            |             |             |              |
| Kotha   | Left  | 8078    | 10098      | 50.158      | 17.041      | 10.33        |
| barrage | Bank  |         |            |             | (November)  | (9.39+0.94)  |
|         | Canal |         |            |             |             |              |
| Kotha   | Right | 9278    | 11599      | 57.614      | 19.575      | 11.87        |
| barrage | Bank  |         |            |             | (November)  | (10.79+1.08) |
|         | Canal |         |            |             |             |              |

\*A provision of 10% of irrigation demand has been made towards rush irrigation demand in canal capacity.

#### 6.2.12 Ground water

#### 6.2.12.1 Ground water quality

Majority of water bearing formations of command area of proposed barrages consists of crystalline rocks, which by virtue of being consolidated in nature do not pose any adverse chemical effect on water. Chemical quality of ground water, thus, observed to be within limits prescribed for domestic and irrigation purposes. It varies from 300 to 1500 micro mhos/cm at  $25^{\circ}$ C. There may, however, be localized concentrations of trace elements in the water, which are harmful for drinking purposes. This aspect could not be ascertained due to non-availability of requisite data.

In order to make an economic and efficient use of available water resources, it is essential that a judicious mix of surface and ground water are resorted for irrigation purposes. There is considerable scope to further intensify the irrigation in the command areas by making use of the ground water resources available. This may further facilitate in checking the hazards of water logging and soil salinity in the command.

#### 6.2.12.2 Conjunctive use / ground water support

District wise and command wise ground water resources for the districts of upper Betwa command assessed as per guideline adopted by Central Ground Water Board in Ken-Betwa Link Phase-I are as given in Annexure 6.2.5 of Volume – II. In the present planning, no use of ground water is proposed in any of the command. However, the available ground water resources can be utilized in future for further intensification or augmentation of the irrigation facilities in various commands, particularly to meet the irrigation requirement during lean season.

#### 6.2.13 Command Area Development

#### 6.2.13.1 Command area details

#### (i) Location

The Upper Betwa command area is covered under three barrages on Betwa river, namely Neemkheda, Kotha and Barari barrage and Kesari barrage on Keotan river proposed in the Upper Betwa region. These areas are covered in the districts of Raisen, Vidisha, Sagar and Ashoknagar of Madhya Pradesh. The CCA has been worked out under these projects as 26346 ha.

# 6.2.14 Classification of land (forest, grass land, cultivable and, cultivable waste, barren land)

The classification of land in the command area is furnished in Table-6.44.

#### **Table - 6.44**

| Type of land                   | Raisen   | Vidisha  | Total |
|--------------------------------|----------|----------|-------|
|                                | district | district |       |
| Gross command Area             | 2963     | 13163    | 16127 |
| Forest land                    | 0        | 0        | 0     |
| Land under non-agriculture use | 145      | 499      | 644   |
| Barren land                    | 13       | 212      | 225   |
| Grass land                     | 90       | 215      | 305   |
| Culturable waste land          | 27       | 110      | 137   |
| Fallow land                    | 7        | 52       | 59    |
| Net sown area                  | 2620     | 11896    | 14516 |
| Other land                     | 61       | 180      | 241   |

Districtwise land use particulars in Upper Betwa command Unit: Ha

#### 6.2.15 Size of land holding

The size of land holding and area in the districts lying in the command area of 4 barrages during the year 2005-06 is given in Table-6.45.

### Table - 6.45Size of land holding in the command area of Upper Betwa barrages

| Description                     | Vid    | isha   | Raisen |        |  |
|---------------------------------|--------|--------|--------|--------|--|
|                                 | No.    | Area   | No.    | Area   |  |
| Marginal farmers less than 1 ha | 40774  | 20814  | 40748  | 22943  |  |
| Small farmers more than 1 ha    | 41069  | 59005  | 52666  | 80438  |  |
| less than 2 ha                  |        |        |        |        |  |
| Below medium farmers 2-4 ha     | 37317  | 105148 | 39348  | 109174 |  |
| Medium farmers 4-9.99 ha        | 31690  | 196460 | 27757  | 163713 |  |
| Big farmer 10 to 20 ha          | 9285   | 165024 | 4017   | 63471  |  |
| Total                           | 160135 | 546451 | 164536 | 439739 |  |

#### 6.2.16 Climate of the command area

(a) **Rainfall:** The command area receives most of its rainfall during the monsoon from July to September from the southwest monsoon.

The coefficient of variation in annual rainfall is appreciable i.e. 22.05. The maximum and minimum rainfall in the area is 1700 mm to 600 mm respectively.

(b) **Temperature:** The climate of the area is characterized by a hot summer and a mild winter. The climate is hot during summer with the temperature as high as  $45^{\circ}$ C.

(c) **Relative humidity:** The mean monthly relative humidity observed at Bhopal IMD observatory, which is close to the command area varies between 22% to 78%.

(d) Wind velocity: The monthly mean wind velocity observed at Bhopal IMD observatory varies between 6.9 km/hr to 19.4 km/hr.

#### 6.2.17 Irrigation

#### (a) Present sources of irrigation in the command

The present sources of irrigation in the proposed command area are mainly the age-old tanks and ponds, which collect the rainwater during the monsoon season. Besides these, privately owned open wells and tube wells also provide water for irrigation to very small areas.

#### (b) Methods of irrigation followed

At present, the conventional method of applying water through minor irrigation channels, distributaries and water courses is being followed in these areas. However, sometimes electric/diesel pump sets are also used to lift water from the wells.

#### (c) Status of land development for irrigated area

#### (i) Condition of channels

The condition of existing irrigation channels in the command area is generally satisfactory except in some reaches where proper maintenance is required. Most of the channels are unlined, hence susceptible to loss of water through seepage.

#### (ii) Longitudinal slope of field

The slope in agricultural fields where irrigation channels are located, are adequate and irrigation water reaches almost every nook and corner of the field.

#### (iii) Status of field channels

Field channels constructed by farmers for irrigating land by pumping river water are found to be existing in some areas.

#### 6.2.18 Socio-economic aspects

M/s Agricultural Finance Corporation Limited, Hyderabad has carried out studies for socio-economic aspects in the command area of 4 barrages. The same is reproduced in Table-6.46.

| S. No. | Description                       | Vidisha | Raisen |  |
|--------|-----------------------------------|---------|--------|--|
| 1      | Population density per sq.km.     | 166     | 133    |  |
| 2      | Sex ratio (females per 1000 male) | 875     | 881    |  |
| 3      | SC                                | 24.28%  | 23.26% |  |
| 4      | ST                                | 4.31%   | 3.50 % |  |
| 5      | Literacy rate                     | 55.73%  | 53.30% |  |
| 6      | Educational institutions          | 2705    | 2465   |  |
| 7      | Medical and health facilities     | 900     | 816    |  |
| 8      | Drinking water supply             |         |        |  |
| 9      | Problematic villages              | 760     | 1080   |  |
| 10     | Tap water supply                  | 3       | 64     |  |
| 11     | Tube/pump well supply             | 865     | 1064   |  |

#### Table - 6.46

#### Districtwise socio-economic aspects in the Upper Betwa command

#### 6.2.19 Infrastructure facilities

#### (a) Roads and railways

Vidisha and Raisen district headquarters are connected by rail and roads. However, the roads in rural areas are generally kachcha roads.

#### (b) Marketing facilities

Most of the villages in the command are dependent on the marketing facilities available in Vidisha, Raisen and Bhopal.

#### (c) Agro-industries

No major agro-based industries are available within the command. However, few oil mills and flour mills are located in the common which cater to the needs of command people.

#### (d) Banks/credit societies etc.

Nationalized Banks are exists at district head quarters and tehsils. However, few Gramin Banks are functioning in rural areas.

#### 6.2.20 Topography and soils

#### (i) Topography

Isolated hill tops, valleys, forests and streams are dominating in the area. Coarse grained formations are predominantly found in the command area.

#### (ii) Land slopes

The slopes of the land in the command area are moderate and in few places it is steep.

#### (iii) Soils

Based on the information provided by National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, the soils in the command area can be broadly classified into three categories. They are soil in hills and hill ranges, plateau soils, pediment soils, soils of level alluvial plain and undulating flood plain and soils of dissected flood plan. Details are given below:-

1. Deep, moderately well drained, clayey soils on very gently sloping plain lan with moderate erosion, associated with:Deep, moderately well drained, calcareous, clayey soils on very gently sloping with moderate erosion.

2. Deep, moderately well drained, clayey soils on very gently sloping plains with valleys with valleys with moderate erosion, associated

with: Deep, moderately well drained, calcareous, clayey soils on very gently sloping with moderate erosion.

3. Shallow, well drained, loamy soils on gently sloping undulating upland with hummocks with moderate erosion, associated with Very shallow, somewhat excessively drained, loamy soils on moderately sloping with severe erosion.

#### 6.2.21 Drainage

The command area has good surface drainage and sub-surface drainage. The water holding capacity being low to medium is expected in clay patches. With the network of a number of tributaries namely Newman, Sagar, Bah, Keotan etc., the command area has quite good draining facilities.

#### 6.3.22 Agriculture

The classification of lands and the present land use has already been discussed in the chapter. Land use will change due to increase in cultivated area and increase in developmental activities due to this project.

#### 6.2.23 Farmers' attitude towards improved agricultural practices

This farmers' attitude towards improved agricultural practices is positive. However, due to non-availability of water even from the existing tanks, they find it difficult to carry out cultivation in the entire area.

#### (a) Use of improved implements and seeds

The use of bullock power for ploughing of land is common in the area of proposed command. The use of tractor is also done in these areas but the percentage is very low. Likewise, the use of traditional types of implements is also very common among majority of the farmers.

#### (b) Use of fertilizers, insecticides, pesticides, etc.

Although about 25% of the farmers use fertilizers and manures for increasing the yield, very few of them are particular about use of insecticides/pesticides for control of plant diseases.

#### (c) Extension services

Occasional extension services are provided by the State Agriculture Department to educate the farmers about the use of improved and modern agriculture technology, and cultivation of high value crops viz. Groundnut, Soyabean, Sunflower, Chillies etc. But, due to various reasons including inadequate financial resources, the extension services are yet to become popular among the farmers of proposed command area.

#### 6.2.24 Identification of problems in command area

(i) Land slopes: the land is generally undulating; therefore, canal distribution system has to be aligned accordingly.

(ii) Soil depth: There should be no problem on this account, as sufficient soil depth is available in the area for providing canal irrigation.

(iii) Salinity/Alkalinity: Since the waters of Betwa river and its tributaries are proposed to be used for irrigation in these areas, which do not have salinity problem, it need not be a cause of concern. However, slight alkaline nature of the soils of the region is considered rather suitable for crops like Jowar, Soyabean, Wheat and Moong.

In general, the soils in these areas are stable and not prone to erosion. However, in certain area, the soils may be prone to erosion due to their coarse texture. Such soils can be stabilized by putting them under permanent pastures and grazing lands.

(iv) Water logging: No water-logging problem of serious nature has been reported from the area.

(v) **Drainage:** Looking the general condition and topography of the command, special care should be taken for construction of field channels and drainage, which can be managed by the Agricultural Department at farmer's cost or loans from the various land development banks.

#### 6.2.25 Financial problems

There are number of wells and tanks in the area but due to less recharge in the area, these wells and tanks either have less water or no water during lean season. Farmers should be provided fund assistance for renovation of these tanks and wells for better irrigation.

#### 6.2.25 Proposed cropping pattern, with justification based on land irrigability classification, agro climatic conditions developed irrigated cropping pattern in adjoining project/area etc.

Proposed cropping pattern for 4 barrages has been supplied by Govt. of Madhya Pradesh in consultation with Agriculture Department of Govt. of Madhya Pradesh and same has been considered in the study.

#### 6.2.27 Land development work proposals

A provision of Rs. 527 lakh has been kept in the estimate for land development works. At the time of implementation of the project, detailed survey of each command will be done and based on the requirement, land development works will be taken up. This work will be done by state Irrigation Department or state Agriculture Department or Command Area Development Authority (to be decided by State Government).

At present, fairly good extension services exists in the command area and number of commercial banks and co-operative banks have their branches there. Branches of land development banks are also located in some rural areas of the command. Moreover, the agricultural materials like seeds, fertilizers, insecticides, pesticides etc. are provided to the farmers by the concerned government department at subsidized rates through different sale booths or fair price shops. However, due to numerous reasons, especially inadequacy of financial resources, extension services have not yet become very popular.

#### 6.2.27.1 Ayacut roads

Suitable provisions for CD structures will be made to facilitate traffic movement through Ayacut roads.

#### 6.2.28 Benefits

### (i) Crop wise increase in yield per ha and total estimated output from the command

The crop wise yield in pre & post project scenarios for 4 barrages is furnished in Table-6.47 to 6.50.

#### (ii) Estimated cost of increased production

The yield in pre and post project scenarios have been assessed in Table-6.47 to 6.50. Based on the increased production cost of increased production has been assessed in Annexure 10.6.4 of Volume – II.

#### (iii) Likely socio-economic aspects

Due to increase in food grain production, the socio-economic condition of farmers will improve in general. Agricultural labourers will get employment in the nearby area. Situation livestock will improve. Farmers will try to establish agro-based industries in the area.

#### **Table - 6.47**

### Total Output of agricultural production under pre & post project scenario of Neemkheda barrage

| SI. | Name of      | Pre pr<br>scena | •    |         |       | Post p |      | Remark  |        |         |
|-----|--------------|-----------------|------|---------|-------|--------|------|---------|--------|---------|
| No. | crop         | % of            | Area | Yield   | Gross | % of   | Area | Yield   | Gross  |         |
|     |              | crop            |      |         | yield | crop   |      |         | yield  |         |
|     |              |                 |      |         | in    |        |      |         | in     |         |
|     |              |                 | ha   | qtls/ha | qtls  |        | ha   | qtls/ha | qtls   |         |
| A.  | Kharif       |                 |      |         |       |        |      |         |        |         |
| 1.  | Paddy        | 4.60            | 141  | 15      | 2115  | 4.60   | 141  | 15      | 2115   | Rainfed |
| 2.  | Maize        | 0.60            | 19   | 14      | 266   | 0.60   | 19   | 14      | 266    | Rainfed |
| 3.  | Other pulses | 0.60            | 19   | 5       | 95    | 0.60   | 19   | 5       | 95     | Rainfed |
| 4.  | Soyabean     | 27.60           | 845  | 8       | 6760  | 27.60  | 845  | 8       | 6760   | Rainfed |
| 5.  | Vegetable    | 0.40            | 13   | 30      | 390   | 0.40   | 13   | 30      | 390    | Rainfed |
|     | Total        | 33.80           | 1037 |         | 9626  | 33.80  | 1037 |         | 9626   |         |
| В.  | Rabi         |                 |      |         |       |        |      |         |        |         |
| 1.  | Wheat        | 35.00           | 1072 | 15      | 16080 | 70.00  | 2146 | 40      | 85840  |         |
| 2.  | Gram         | 17.60           | 539  | 8       | 4312  | 30.00  | 920  | 20      | 18400  |         |
| 4.  | Linseed      | 0.10            | 4    | 5       | 20    | 0.00   | 0    | 15      | 0      |         |
| 5.  | Other pulses | 5.60            | 171  | 5       | 855   | 0.00   | 0    | 12      | 0      |         |
| 6.  | Tur          | 6.60            | 202  | 5       | 1010  | 0.00   | 0    | 20      | 0      |         |
| 7.  | Fodder crops | 1.00            | 31   | 200     | 6200  | 0.00   | 0    | 400     | 0      |         |
| 8.  | Vegetable    | 0.10            | 4    | 30      | 120   | 0.00   | 0    | 50      | 0      |         |
|     | Total        | 66.00           | 2023 |         | 28597 | 100.00 | 3066 |         | 104240 |         |
| C.  | Perennial    |                 |      |         |       |        |      |         |        |         |
| 1.  | Sugarcane    | 0.20            | 6    | 200     | 1400  | 0.20   | 7    | 500     | 3500   |         |
|     | Total        | 100             | 3066 |         | 39423 | 134    | 4110 | 500     | 117366 |         |

#### **Table - 6.48**

| S.  | Name of      | -     | roject<br>Iario |         |         | Post p |        | Remark  |          |         |
|-----|--------------|-------|-----------------|---------|---------|--------|--------|---------|----------|---------|
| No. | crop         | % of  | Area            | Yield   | Gross   | % of   | Area   | Yield   | Gross    |         |
|     |              | crop  |                 |         | yield   | crop   |        |         | yield    |         |
|     |              |       |                 |         | in      |        |        |         | in       |         |
|     |              |       | ha              | qtls/ha | qtls    |        | ha     | qtls/ha | qtls     |         |
| А.  | Kharif       |       |                 |         |         |        |        |         |          |         |
| 1.  | Paddy        | 0.10  | 5               | 15      | 75      | 0.10   | 5      | 15      | 75       | Rainfed |
| 2.  | Maize        | 0.40  | 18              | 14      | 252     | 0.40   | 18     | 14      | 252      | Rainfed |
| 3.  | Other pulses | 6.20  | 275             | 5       | 1375    | 6.20   | 275    | 5       | 1375     | Rainfed |
| 4.  | Soyabean     | 30.70 | 1364            | 8       | 10912   | 30.70  | 1364   | 8       | 10912    | Rainfed |
| 5.  | Ground nut   | 0.20  | 9               | 10      | 90      | 0.10   | 9      | 10      | 90       | Rainfed |
| 6.  | Vegetable    | 0.20  | 9               | 30      | 270     | 0.20   | 9      | 30      | 270      | Rainfed |
|     | Total        | 37.80 | 1680            |         | 12974   | 37.70  | 1680   |         | 12974    |         |
| B.  | Rabi         |       |                 |         |         |        |        |         |          |         |
| 1.  | Wheat        | 30.80 | 1368            | 15      | 20520   | 90.00  | 4000   | 40      | 160000   |         |
| 2.  | Gram         | 21.10 | 937             | 8       | 7496    | 10.00  | 444    | 20      | 8880     |         |
| 3.  | Mustard      | 0.10  | 5               | 6       | 30      | 0.00   | 0      | 16      | 0        |         |
| 4.  | Linseed      | 0.00  | 0               | 5       | 0       | 0.00   | 0      | 15      | 0        |         |
| 5.  | Other pulses | 8.40  | 373             | 5       | 1865    | 0.00   | 0      | 12      | 0        |         |
| 6.  | Tur          | 0.80  | 36              | 5       | 180     | 0.00   | 0      | 20      | 0        |         |
| 7.  | Fodder crops | 0.80  | 36              | 200     | 7200    | 0.00   | 0      | 400     | 0        |         |
| 8.  | Vegetable    | 0.20  | 9               | 9       | 81      | 0.00   | 0      | 50      | 0        |         |
|     | Total        | 62.20 | 2764            |         | 37372   | 100    | 4444   |         | 168880   |         |
| C.  | Perennial    |       |                 |         |         |        |        |         |          |         |
| 1.  | Sugarcane    | 0.00  | 0               | 200     | 0       | 0      | 0      | 500     | 0        |         |
|     | Total        | 100   | 4444.0          |         | 50346.0 | 137.7  | 6124.0 |         | 181854.0 |         |

# Total Output of agricultural production under pre & post project scenario of Barari barrage

# Table - 6.49Total Output of agricultural production under pre & post project<br/>scenario of Kesari barrage

| S.  | Name of      | -                    | oroject       |         |                      | Post p       | project sc | enario  |                      | Remark  |
|-----|--------------|----------------------|---------------|---------|----------------------|--------------|------------|---------|----------------------|---------|
| No. | сгор         | scer<br>% of<br>crop | nario<br>Area | Yield   | Gross<br>yield<br>in | % of<br>crop | Area       | Yield   | Gross<br>yield<br>in |         |
|     |              |                      | ha            | qtls/ha | qtls                 |              | ha         | qtls/ha | qtls                 |         |
| A.  | Kharif       |                      |               |         |                      |              |            |         |                      |         |
| 1.  | Paddy        | 0.10                 | 2             | 15      | 30                   | 0.10         | 2          | 15      | 30                   | Rainfed |
| 2.  | Maize        | 0.40                 | 6             | 14      | 84                   | 0.40         | 6          | 14      | 84                   | Rainfed |
| 3.  | Other pulses | 6.20                 | 92            | 5       | 460                  | 6.20         | 92         | 5       | 460                  | Rainfed |
| 4.  | Soyabean     | 30.70                | 454           | 8       | 3632                 | 40.00        | 592        | 23      | 13616                |         |
| 5.  | Ground nut   | 0.20                 | 3             | 10      | 30                   | 0.10         | 3          | 10      | 30                   | Rainfed |
| 6.  | Vegetable    | 0.20                 | 3             | 30      | 90                   | 0.20         | 3          | 30      | 90                   | Rainfed |
|     | Total        | 37.80                | 560           |         | 4326                 | 47.00        | 698        | 97      | 14310                |         |
| B.  | Rabi         |                      |               |         |                      |              |            |         |                      |         |
| 1.  | Wheat        | 30.80                | 454           | 15      | 6810                 | 90.00        | 1331       | 40      | 53240                |         |
| 2.  | Gram         | 21.10                | 312           | 8       | 2496                 | 10.00        | 148        | 20      | 2960                 |         |
| 3.  | Mustard      | 0.10                 | 2             | 6       | 12                   | 0.00         | 0          | 16      | 0                    |         |
| 4.  | Linseed      | 0.00                 | 0             | 5       | 0                    | 0.00         | 0          | 15      | 0                    |         |
| 5.  | Other pulses | 8.40                 | 124           | 5       | 620                  | 0.00         | 0          | 12      | 0                    |         |
| 6.  | Tur          | 0.80                 | 12            | 5       | 60                   | 0.00         | 0          | 20      | 0                    |         |
| 7.  | Fodder crops | 0.80                 | 12            | 200     | 2400                 | 0.00         | 0          | 400     | 0                    |         |
| 8.  | Vegetable    | 0.20                 | 3             | 30      | 90                   | 0.00         | 0          | 50      | 0                    |         |
|     | Total        | 62.20                | 919.00        |         | 12488.00             | 100.00       | 1479.00    | 573.00  | 56200.00             |         |
| C.  | Perennial    |                      |               |         |                      |              |            |         |                      |         |
| 1.  | Sugarcane    | 0.00                 | 0             | 200     | 0                    | 0            | 0          | 500     | 0                    |         |
|     | Total        | 100                  | 1479.00       |         | 16814.00             | 147.00       | 2177.00    | 1170.0  | 70510.00             |         |

#### Table - 6.50

| Total Output of agricultural production under pre & post project | t |
|------------------------------------------------------------------|---|
| scenario of Kotha barrage                                        |   |

| SI. | Name of      |       | oroject<br>nario |         |        |       | Remark |         |        |                                 |
|-----|--------------|-------|------------------|---------|--------|-------|--------|---------|--------|---------------------------------|
| No. | crop         | % of  | Area             | Yield   | Gross  | % of  | Area   | Yield   | Gross  |                                 |
|     |              | crop  |                  |         | yield  | crop  |        |         | yield  |                                 |
|     |              |       |                  |         | in     |       |        |         | in     |                                 |
|     | 171 40       |       | ha               | qtls/ha | qtls   |       | ha     | qtls/ha | qtls   |                                 |
| A.  | Kharif       |       |                  |         |        |       |        |         |        |                                 |
| 1.  | Paddy        | 0.10  | 18               | 15      | 270    | 0.10  | 18     | 15      | 270    | Rainfed                         |
| 2.  | Maize        | 0.40  | 70               | 14      | 980    | 0.40  | 70     | 14      | 980    | Rainfed                         |
| 3.  | Other pulses | 6.20  | 1076             | 5       | 5380   | 6.20  | 1076   | 5       | 5380   | Rainfed                         |
| 4.  | Soyabean     |       |                  |         |        |       |        |         |        | 25%                             |
|     |              | 30.70 | 5328             | 8       | 42624  | 30.70 | 5328   | 23      | 122544 | irrigated<br>+ 5.7 %<br>rainfed |
| 5.  | Ground nut   | 0.20  | 35               | 10      | 350    | 0.10  | 35     | 10      | 350    | Rainfed                         |
| 6.  | Vegetable    | 0.20  | 35               | 30      | 1050   | 0.20  | 35     | 30      | 1050   | Rainfed                         |
|     | Total        | 37.80 | 6562             |         | 50654  | 37.70 | 6562   |         | 130574 |                                 |
| B.  | Rabi         |       |                  |         |        |       |        |         |        |                                 |
| 1.  | Wheat        | 30.80 | 5345             | 15      | 80175  | 90.00 | 15621  | 40      | 624840 |                                 |
| 2.  | Gram         | 21.10 | 3662             | 8       | 29296  | 10.00 | 1736   | 80      | 34720  |                                 |
| 3.  | Mustard      | 0.10  | 18               | 6       | 108    | 0.00  | 0      | 16      | 0      |                                 |
| 4.  | Linseed      | 0.00  | 0                | 5       | 0      | 0.00  | 0      | 18      | 0      |                                 |
| 5.  | Other pulses | 8.40  | 1457             | 5       | 7285   | 0.00  | 0      | 12      | 0      |                                 |
| 6.  | Tur          | 0.80  | 139              | 5       | 695    | 0.00  | 0      | 20      | 0      |                                 |
| 7.  | Fodder crops | 0.80  | 139              | 200     | 27800  | 0.00  | 0      | 400     | 0      |                                 |
| 8.  | Vegetable    | 0.20  | 35               | 30      | 1050   | 0.00  | 0      | 50      | 0      |                                 |
|     | Total        | 62.20 | 10795            |         | 146409 | 100   | 17357  |         | 659560 |                                 |
| C.  | Perennial    |       |                  |         |        |       |        |         |        |                                 |
| 1.  | Sugarcane    | 0.00  | 0                | 200     | 0      | 0     | 0      | 500     | 0      |                                 |
|     | Total        | 100   | 17328            |         | 193534 | 138   | 23905  |         | 879343 |                                 |

# 6.3 Brief of command area development and irrigation planning of Ken-Betwa Link Project(Phase-II)

The total culturable command area covering by 4 barrages and Lower Orr dam is 71393 ha (annual irrigation of 98846 ha) utilizing about 488.61 MCM water. Details at a glance are furnished in Table-6.51.

#### **Table - 6.51**

#### Details of Pond level/FRL, CCA, Annual irrigation and water utilization of all 5 structures proposed under Ken–Betwa Link Project (Phase-II)

|     |                   | (         | asc-11)    |          |            |             |
|-----|-------------------|-----------|------------|----------|------------|-------------|
| S.  | Name of Structure | Name      | Pond       | CCA (ha) | Annual     | Water       |
| No. |                   | of        | level /    |          | irrigation | utilization |
|     |                   | river     | FRL        |          | (ha)       | (MCM)       |
|     |                   |           | <b>(m)</b> |          |            |             |
|     | Barrages upstream | of Rajgha | at dam     |          |            |             |
| 1   | Neemkheda barrage | Betwa     | 426.00     | 3066     | 3066       | 16.61       |
| 2   | Barari barrage    | Betwa     | 407.70     | 4444     | 4444       | 24.53       |
| 3   | Kotha barrage     | Betwa     | 396.00     | 17357    | 21696      | 107.77      |
| 4   | Kesari barrage    | Keotan    | 403.90     | 1479     | 2070       | 10.03       |
|     | Sub – Total:      |           |            | 26346    | 31276      | 158.94      |
|     | Dam in downstream | of Rajgl  | nat dam    |          |            |             |
| 1   | Lower Orr dam     | Orr       | 380        | 45047    | 67570      | 329.67      |
|     | Sub – Total:      |           | 45047      | 67570    | 329.67     |             |
|     | Grand Total:      |           |            | 71393    | 98846      | 488.61      |